Trait static_math::traits::LinearAlgebra [−][src]
pub trait LinearAlgebra<T> { fn rows(&self) -> usize; fn cols(&self) -> usize; fn transpose(&self) -> Self
where
Self: Sized; fn trace(&self) -> T; fn norm2(&self) -> T; fn det(&self) -> T; fn inverse(&self) -> Option<Self>
where
Self: Sized; fn qr(&self) -> Option<(Self, Self)>
where
Self: Sized; fn shape(&self) -> (usize, usize) { ... } }
Expand description
Generic Trait for Matrix operations and Linear Algebra methods
Required methods
fn rows(&self) -> usize
[src]
fn rows(&self) -> usize
[src]get the rows of the matrix
Provided methods
Implementors
impl<T: Float + Sum> LinearAlgebra<T> for M22<T>
[src]
impl<T: Float + Sum> LinearAlgebra<T> for M22<T>
[src]impl<T: Float + Sum> LinearAlgebra<T> for M33<T>
[src]
impl<T: Float + Sum> LinearAlgebra<T> for M33<T>
[src]impl<T: Float + Sum> LinearAlgebra<T> for M44<T>
[src]
impl<T: Float + Sum> LinearAlgebra<T> for M44<T>
[src]impl<T: Float + Sum> LinearAlgebra<T> for M55<T>
[src]
impl<T: Float + Sum> LinearAlgebra<T> for M55<T>
[src]fn inverse(&self) -> Option<Self>
[src]
fn inverse(&self) -> Option<Self>
[src]Calculate the inverse of the Matrix6x6 via tha Adjoint Matrix: A^(-1) = 1/det Adj where Adj = Cofactor.Transpose() Cofactor = (-1)^(i+j) M(i, j).det()
impl<T: Float + Sum> LinearAlgebra<T> for M66<T>
[src]
impl<T: Float + Sum> LinearAlgebra<T> for M66<T>
[src]fn inverse(&self) -> Option<Self>
[src]
fn inverse(&self) -> Option<Self>
[src]Calculate the inverse of the M66 via tha Adjoint Matrix:
A^(-1) = (1/det) * Adj
where: Adj = Cofactor.Transpose()
Cofactor = (-1)^(i+j) * M(i, j).det()