Struct static_math::quaternion::Quaternion[][src]

pub struct Quaternion<T> {
    pub q0: T,
    pub q: V3<T>,
    // some fields omitted
}

Quaternion type

Fields

q0: T

Scalar part

q: V3<T>

Imaginary part

Implementations

impl<T> Quaternion<T>[src]

pub const fn new(q0: T, q: V3<T>) -> Self[src]

construct a new Quaternion from a number(real part) and a vector(imag part)

pub fn new_from(q0: T, q1: T, q2: T, q3: T) -> Self[src]

construct a new Quaternion zrom four numbers

impl<T: Num + Copy> Quaternion<T>[src]

pub fn dot(&self, rhs: Self) -> T[src]

dot product

pub fn real(&self) -> T[src]

get the real part

pub fn imag(&self) -> V3<T>[src]

get the imaginary part

pub fn one() -> Quaternion<T>[src]

construct a unit Quaternion

pub fn zero() -> Self[src]

construct a zero Quaternion

pub fn new_real(q0: T) -> Self[src]

construct a pure “real” Quaternion

pub fn new_imag(q: V3<T>) -> Self[src]

construct a pure “imaginary” Quaternion

pub fn abs2(&self) -> T[src]

calculate the abs2 of the Quaternion

impl<T: Num + Copy + Signed> Quaternion<T>[src]

pub fn conj(&self) -> Self[src]

impl<T: Float> Quaternion<T>[src]

pub fn norm2(&self) -> T[src]

impl<T: Float + Signed> Quaternion<T>[src]

pub fn inv(&self) -> Option<Self>[src]

impl<T: Float + FloatConst + Signed> Quaternion<T>[src]

pub fn normalize(&self) -> Option<Self>[src]

normalize the Quaternion only if necesary

pub fn abs_imag(&self) -> T[src]

get the norm of the “imaginary” part

pub fn rotation(theta: T, v: V3<T>) -> Self[src]

generate a Quaternion that represents a rotation of a angle theta around the axis(normalized) v

pub fn rotation_norm_encoded(v: V3<T>) -> Self[src]

generate a Quaternion that represents a rotation of a angle theta around the axis(normalized) v, the angle theta is encoded in the norm of the vector v

pub fn to_rotation(&self) -> M33<T>[src]

pub fn from_euler_angles(yay: T, pitch: T, roll: T) -> Self[src]

create a quaternion that represents the rotation from a Euler angles with the roll-pitch-yay convention

pub fn get_angle(&self) -> T[src]

get the angle of representation from this Quaternion

pub fn get_axis(&self) -> Option<V3<T>>[src]

get the axis of rotation from which this Quaternion represent

pub fn axis_angle(&self) -> (T, Option<V3<T>>)[src]

combine the two previous methods: get_axis and get_angle

pub fn to_euler_angles(&self) -> (T, T, T)[src]

get the euler angles from the Quaternion

pub fn normalize_q(&self) -> Self[src]

normalize the Quaternion

pub fn argq(&self) -> Self[src]

pub fn exp(&self) -> Self[src]

exponential function apply to the current Quaternion

pub fn ln(&self) -> Self[src]

natural logaritmic function apply to the current Quaternion

pub fn sin(&self) -> Self[src]

sin function apply to the current Quaternion

pub fn cos(&self) -> Self[src]

cos function apply to the current Quaternion

pub fn sqrt(&self) -> Self[src]

sqrt function apply to the current Quaternion

pub fn pow(&self, rhs: Self) -> Self[src]

power the current Quaternion to the rhs argument

pub fn slerp(a: Self, b: Self, t: T) -> Self[src]

Brief.

Spherical Linear Interpolation between two Quaternions this implementation follow this implementations: https://www.mrpt.org/tutorials/programming/maths-and-geometry/slerp-interpolation/

Function arguments: a: Quaternion(normalized) b: Quaternion(normalized) t: Float in the closed interval [0.0, 1.0]

Trait Implementations

impl<T: Num + Copy> Add<Quaternion<T>> for Quaternion<T>[src]

type Output = Self

The resulting type after applying the + operator.

impl<T: Clone> Clone for Quaternion<T>[src]

impl<T: Copy> Copy for Quaternion<T>[src]

impl<T: Debug> Debug for Quaternion<T>[src]

impl<T: Num + Display> Display for Quaternion<T>[src]

impl<T: Float + Signed> Div<Quaternion<T>> for Quaternion<T>[src]

type Output = Self

The resulting type after applying the / operator.

impl<T: Num + Copy> Div<T> for Quaternion<T>[src]

type Output = Self

The resulting type after applying the / operator.

impl<T: Copy> From<[T; 4]> for Quaternion<T>[src]

impl<T: Num + Copy> Mul<Quaternion<T>> for Quaternion<T>[src]

type Output = Self

The resulting type after applying the * operator.

impl<T: Num + Copy> Mul<T> for Quaternion<T>[src]

type Output = Quaternion<T>

The resulting type after applying the * operator.

impl<T: Num + Copy + Signed> Mul<V3<T>> for Quaternion<T>[src]

type Output = V3<T>

The resulting type after applying the * operator.

impl<T: Num + Copy + Signed> Neg for Quaternion<T>[src]

type Output = Self

The resulting type after applying the - operator.

impl<T: Num + Copy> One for Quaternion<T>[src]

fn one() -> Self[src]

Create an identity Quaternion

impl<T: PartialEq> PartialEq<Quaternion<T>> for Quaternion<T>[src]

impl<T> StructuralPartialEq for Quaternion<T>[src]

impl<T: Num + Copy> Sub<Quaternion<T>> for Quaternion<T>[src]

type Output = Self

The resulting type after applying the - operator.

impl<T: Num + Copy> Zero for Quaternion<T>[src]

Auto Trait Implementations

impl<T> RefUnwindSafe for Quaternion<T> where
    T: RefUnwindSafe

impl<T> Send for Quaternion<T> where
    T: Send

impl<T> Sync for Quaternion<T> where
    T: Sync

impl<T> Unpin for Quaternion<T> where
    T: Unpin

impl<T> UnwindSafe for Quaternion<T> where
    T: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.