Enum starstuff_types::angle::Angle
source · Expand description
Enum containing common angle variants
Variants§
Degree(f64)
Variant containing decimal degree
Radian(f64)
Variant containing decimal radian
Hour(f64)
Variant containing decimal hour
Implementations§
source§impl Angle
impl Angle
sourcepub fn to_rad(&self) -> f64
pub fn to_rad(&self) -> f64
Convert to decimal radian
Examples found in repository?
More examples
src/coord.rs (line 28)
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
fn new(angle: &Angle) -> Self {
let rad = angle.to_rad();
if !(0.0..=PI).contains(&rad) {
panic!("ZenithAngle must be between 0 and pi!")
}
Self(*angle)
}
fn value(&self) -> Angle {
self.0
}
}
/**
Declination
<https://en.wikipedia.org/wiki/Declination>
*/
#[derive(Debug, Copy, Clone)]
pub struct Declination(pub Angle);
impl ConstrainedAngle for Declination {
fn new(angle: &Angle) -> Self {
let rad = angle.to_rad();
if !(-PI_HALF..=PI_HALF).contains(&rad) {
panic!("Declination must be between -pi/2 and pi/2!")
}
Self(*angle)
}
fn value(&self) -> Angle {
self.0
}
}
/**
Altitude
<https://en.wikipedia.org/wiki/Horizontal_coordinate_system>
*/
#[derive(Debug, Copy, Clone)]
pub struct Altitude(pub Angle);
impl ConstrainedAngle for Altitude {
fn new(angle: &Angle) -> Self {
let rad = angle.to_rad();
if !(-PI_HALF..=PI_HALF).contains(&rad) {
panic!("Altitude must be between -pi/2 and pi/2!")
}
Self(*angle)
}
fn value(&self) -> Angle {
self.0
}
}
/**
Latitude
<https://en.wikipedia.org/wiki/Latitude>
*/
#[derive(Debug, Copy, Clone)]
pub struct Latitude(pub Angle);
impl ConstrainedAngle for Latitude {
fn new(angle: &Angle) -> Self {
let rad = angle.to_rad();
if !(-PI_HALF..=PI_HALF).contains(&rad) {
panic!("Latitude must be between -pi/2 and pi/2!")
}
Self(*angle)
}
fn value(&self) -> Angle {
self.0
}
}
/**
Right Ascension
<https://en.wikipedia.org/wiki/Right_ascension>
*/
#[derive(Debug, Copy, Clone)]
pub struct RightAscension(pub Angle);
/**
Azimuth
<https://en.wikipedia.org/wiki/Azimuth>
*/
#[derive(Debug, Copy, Clone)]
pub struct Azimuth(pub Angle);
/**
Longitude
<https://en.wikipedia.org/wiki/Longitude>
*/
#[derive(Debug, Copy, Clone)]
pub struct Longitude(pub Angle);
/**
Cartesian Coordinates
<https://en.wikipedia.org/wiki/Cartesian_coordinate_system>
*/
#[derive(Debug, Copy, Clone)]
#[allow(dead_code)]
pub struct Cartesian {
pub x: f64,
pub y: f64,
pub z: f64,
}
/**
Geographic Coordinates (Latitude/Longitude)
<https://en.wikipedia.org/wiki/Geographic_coordinate_system>
*/
#[derive(Debug, Copy, Clone)]
pub struct Geographic {
pub latitude: Latitude,
pub longitude: Longitude,
}
/**
Two-dimensional Polar Coordinates
<https://en.wikipedia.org/wiki/Polar_coordinate_system>
*/
#[derive(Debug, Copy, Clone)]
#[allow(dead_code)]
pub struct Polar {
pub radius: f64,
pub angle: Angle,
}
/**
Equitorial Astronomical Coordinates
<https://en.wikipedia.org/wiki/Astronomical_coordinate_systems#Equatorial_system>
*/
#[derive(Debug, Copy, Clone)]
pub struct Equitorial {
pub right_ascension: RightAscension,
pub declination: Declination,
}
/**
Horizontal Astronomical Coordinates
<https://en.wikipedia.org/wiki/Astronomical_coordinate_systems#Horizontal_system>
*/
#[derive(Debug, Copy, Clone)]
pub struct Horizontal {
pub altitude: Altitude,
pub azimuth: Azimuth,
}
impl Horizontal {
/**
Convert equitorial coordinates to horizontal given a place and time.
<https://en.wikipedia.org/wiki/Astronomical_coordinate_systems#Equatorial_%E2%86%94_horizontal>
*/
pub fn from_equitorial(eq: &Equitorial, geo: &Geographic, sidereal_time: &GMST) -> Self {
let hour_local: Angle = sidereal_time.0 + geo.longitude.0 - eq.right_ascension.0;
let x_horiz: f64 = -(geo.latitude.0.sin()) * (eq.declination.0.cos()) * (hour_local.cos())
+ geo.latitude.0.cos() * (eq.declination.0.sin());
let y_horiz: f64 = eq.declination.0.cos() * hour_local.sin();
let azimuth_rad: Angle = Angle::Radian(-(y_horiz.atan2(x_horiz)));
let altitude_rad: Angle = Angle::Radian(
(geo.latitude.0.sin() * eq.declination.0.sin()
+ geo.latitude.0.cos() * eq.declination.0.cos() * hour_local.cos())
.asin(),
);
Self {
altitude: Altitude(azimuth_rad),
azimuth: Azimuth(altitude_rad),
}
}
/**
Stereographic map projection of coordinates.
<https://en.wikipedia.org/wiki/Stereographic_map_projection>
*/
pub fn stereo_project(&self) -> Polar {
Polar {
radius: 2.0 * (PI_FOURTH - self.altitude.0.to_rad() / 2.0).tan(),
angle: self.azimuth.0,
}
}sourcepub fn sin(&self) -> f64
pub fn sin(&self) -> f64
Examples found in repository?
src/coord.rs (line 192)
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
pub fn from_equitorial(eq: &Equitorial, geo: &Geographic, sidereal_time: &GMST) -> Self {
let hour_local: Angle = sidereal_time.0 + geo.longitude.0 - eq.right_ascension.0;
let x_horiz: f64 = -(geo.latitude.0.sin()) * (eq.declination.0.cos()) * (hour_local.cos())
+ geo.latitude.0.cos() * (eq.declination.0.sin());
let y_horiz: f64 = eq.declination.0.cos() * hour_local.sin();
let azimuth_rad: Angle = Angle::Radian(-(y_horiz.atan2(x_horiz)));
let altitude_rad: Angle = Angle::Radian(
(geo.latitude.0.sin() * eq.declination.0.sin()
+ geo.latitude.0.cos() * eq.declination.0.cos() * hour_local.cos())
.asin(),
);
Self {
altitude: Altitude(azimuth_rad),
azimuth: Azimuth(altitude_rad),
}
}sourcepub fn cos(&self) -> f64
pub fn cos(&self) -> f64
Examples found in repository?
src/coord.rs (line 192)
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
pub fn from_equitorial(eq: &Equitorial, geo: &Geographic, sidereal_time: &GMST) -> Self {
let hour_local: Angle = sidereal_time.0 + geo.longitude.0 - eq.right_ascension.0;
let x_horiz: f64 = -(geo.latitude.0.sin()) * (eq.declination.0.cos()) * (hour_local.cos())
+ geo.latitude.0.cos() * (eq.declination.0.sin());
let y_horiz: f64 = eq.declination.0.cos() * hour_local.sin();
let azimuth_rad: Angle = Angle::Radian(-(y_horiz.atan2(x_horiz)));
let altitude_rad: Angle = Angle::Radian(
(geo.latitude.0.sin() * eq.declination.0.sin()
+ geo.latitude.0.cos() * eq.declination.0.cos() * hour_local.cos())
.asin(),
);
Self {
altitude: Altitude(azimuth_rad),
azimuth: Azimuth(altitude_rad),
}
}