pub struct KeyMaterialRefresh {
    pub period: PacketCount,
    pub pre_announcement_period: PacketCount,
}

Fields§

§period: PacketCount

SRTO_KMREFRESHRATE KM Refresh Period specifies the number of packets to be sent before switching to the new SEK

The recommended KM Refresh Period is after 2^25 packets encrypted with the same SEK are sent.

The number of packets to be transmitted after which the Stream Encryption Key (SEK), used to encrypt packets, will be switched to the new one. Note that the old and new keys live in parallel for a certain period of time (see SRTO_KMPREANNOUNCE) before and after the switchover.

Having a preannounce period before switchover ensures the new SEK is installed at the receiver before the first packet encrypted with the new SEK is received. The old key remains active after switchover in order to decrypt packets that might still be in flight, or packets that have to be retransmitted.

Default value: 0 - corresponds to 16777216 packets (2^24 or 0x1000000).

§pre_announcement_period: PacketCount

SRTO_KMPREANNOUNCE KM Pre-Announcement Period specifies when a new key is announced in a number of packets before key switchover. The same value is used to determine when to decommission the old key after switchover.

The recommended KM Pre-Announcement Period is 4000 packets (i.e. a new key is generated, wrapped, and sent at 2^25 minus 4000 packets; the old key is decommissioned at 2^25 plus 4000 packets).

The interval (defined in packets) between when a new Stream Encrypting Key (SEK) is sent and when switchover occurs. This value also applies to the subsequent interval between when switchover occurs and when the old SEK is decommissioned.

At SRTO_KMPREANNOUNCE packets before switchover the new key is sent (repeatedly, if necessary, until it is confirmed by the receiver).

At the switchover point (see SRTO_KMREFRESHRATE), the sender starts encrypting and sending packets using the new key. The old key persists in case it is needed to decrypt packets that were in the flight window, or retransmitted packets.

The old key is decommissioned at SRTO_KMPREANNOUNCE packets after switchover.

The allowed range for this value is between 1 and half of the current value of SRTO_KMREFRESHRATE. The minimum value should never be less than the flight window SRTO_FC (i.e. the number of packets that have already left the sender but have not yet arrived at the receiver).

The value of SRTO_KMPREANNOUNCE must not exceed (SRTO_KMREFRESHRATE - 1) / 2`.

Default value: 2^12

Trait Implementations§

source§

impl Clone for KeyMaterialRefresh

source§

fn clone(&self) -> KeyMaterialRefresh

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for KeyMaterialRefresh

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Default for KeyMaterialRefresh

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl PartialEq<KeyMaterialRefresh> for KeyMaterialRefresh

source§

fn eq(&self, other: &KeyMaterialRefresh) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl Eq for KeyMaterialRefresh

source§

impl StructuralEq for KeyMaterialRefresh

source§

impl StructuralPartialEq for KeyMaterialRefresh

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<Q, K> Equivalent<K> for Qwhere Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
source§

impl<T> From<T> for T

const: unstable · source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

const: unstable · source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same<T> for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
const: unstable · source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
const: unstable · source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for Twhere V: MultiLane<T>,

§

fn vzip(self) -> V