pub struct HnswConfig {
pub dimension: usize,
pub m: usize,
pub ef_construction: usize,
pub ef_search: usize,
pub ml: u8,
pub distance_metric: DistanceMetric,
pub enable_multilayer: bool,
pub multilayer_level_distribution_base: Option<usize>,
pub multilayer_deterministic_seed: Option<u64>,
}Expand description
HNSW algorithm configuration parameters
This struct defines all parameters that control HNSW index behavior. These parameters significantly impact search quality, construction time, and memory usage patterns.
§Field Descriptions
§dimension
Vector dimension count. Must match all vectors inserted into the index. Typical values: 128-4096 depending on embedding model used.
§m
Number of bi-directional links created for each node during construction. This is the primary parameter controlling index connectivity.
- Lower values (5-12): Faster construction, less memory, lower recall
- Medium values (16-24): Balanced performance (recommended)
- Higher values (32-48): Better recall, more memory, slower construction
§ef_construction
Size of dynamic candidate list during index construction. Controls how thoroughly the algorithm explores the graph during insertion.
- Lower values (100-200): Faster construction
- Higher values (400-800): Better index quality, slower construction
§ef_search
Size of dynamic candidate list during search operations. Controls search accuracy vs speed trade-off.
- Lower values (10-50): Faster search, potentially lower accuracy
- Higher values (100-200): Better recall, slower search
§ml
Maximum number of layers in the HNSW structure. Calculated as floor(-ln(N) * ml_scale) where N is data size. Higher values create deeper graphs for better performance on large datasets.
§distance_metric
Distance function used for vector similarity calculation. Choose based on your vector data characteristics and use case requirements.
§enable_multilayer
Controls whether multi-layer HNSW functionality is enabled. When false (default), all vectors are inserted into the base layer only, providing backward compatibility and avoiding node ID conflicts. When true, proper multi-layer HNSW with exponential distribution is used.
§multilayer_level_distribution_base
Base value for exponential level distribution in multi-layer mode. Higher values create flatter layer distributions (more vectors in higher layers). Default value equals m for optimal performance.
§multilayer_deterministic_seed
Seed for deterministic random number generation in multi-layer operations. When Some(seed), reproducible level assignments are ensured. When None, non-deterministic behavior is used (default for production).
§Default Configuration
The default configuration provides good performance for most use cases:
- Balanced search quality vs speed
- Reasonable memory usage (~2.5x vector size)
- Fast construction time
- Robust to various data distributions
- Single-layer mode for backward compatibility
§Multi-layer vs Single-layer Mode
§Single-layer mode (enable_multilayer = false)
- All vectors inserted into base layer (L0)
- No node ID conflicts
- Faster insertion, simpler search
- Recommended for small datasets (<10k vectors) or when compatibility is critical
§Multi-layer mode (enable_multilayer = true)
- Exponential level distribution for optimal search performance
- 3-10x faster search for large datasets (>10k vectors)
- More complex insertion algorithm with bidirectional ID mapping
- Recommended for large datasets where search performance is critical
§Examples
use sqlitegraph::hnsw::{HnswConfig, DistanceMetric};
// High-precision configuration
let precise_config = HnswConfig {
dimension: 768,
m: 32,
ef_construction: 400,
ef_search: 100,
ml: 24,
distance_metric: DistanceMetric::Cosine,
enable_multilayer: false,
multilayer_level_distribution_base: None,
multilayer_deterministic_seed: None,
};
// Multi-layer configuration for large datasets
let multilayer_config = HnswConfig {
dimension: 768,
m: 16,
ef_construction: 200,
ef_search: 50,
ml: 16,
distance_metric: DistanceMetric::Cosine,
enable_multilayer: true,
multilayer_level_distribution_base: Some(16),
multilayer_deterministic_seed: Some(42),
};Fields§
§dimension: usizeVector dimension count Must match all vectors inserted into the index Range: 1-4096 (practical limits)
m: usizeNumber of connections per node (M parameter) Controls graph connectivity and memory usage Range: 5-48 (typical), higher values require more memory
ef_construction: usizeConstruction ef parameter Dynamic candidate list size during index building Range: 100-800 (typical)
ef_search: usizeSearch ef parameter Dynamic candidate list size during search Range: 10-200 (typical)
ml: u8Maximum number of layers Controls maximum graph depth Range: 8-32 (typical)
distance_metric: DistanceMetricDistance metric for similarity calculation
enable_multilayer: boolEnable multi-layer HNSW functionality When false, uses single-layer mode for backward compatibility When true, enables proper multi-layer HNSW with exponential distribution
multilayer_level_distribution_base: Option<usize>Base value for exponential level distribution in multi-layer mode When None, uses m value as default Higher values create flatter distributions (more vectors in higher layers)
multilayer_deterministic_seed: Option<u64>Seed for deterministic random number generation in multi-layer operations When Some(seed), ensures reproducible level assignments When None, uses non-deterministic behavior (default for production)
Implementations§
Source§impl HnswConfig
impl HnswConfig
Sourcepub fn new(
dimension: usize,
m: usize,
ef_construction: usize,
distance_metric: DistanceMetric,
) -> Self
pub fn new( dimension: usize, m: usize, ef_construction: usize, distance_metric: DistanceMetric, ) -> Self
Create a new HnswConfig with the specified parameters
§Arguments
dimension- Vector dimension countm- Number of connections per node (M parameter)ef_construction- Dynamic candidate list size during constructiondistance_metric- Distance metric for similarity calculation
§Returns
A new HnswConfig instance with sensible defaults for other parameters
§Examples
use sqlitegraph::hnsw::{HnswConfig, DistanceMetric};
let config = HnswConfig::new(128, 16, 200, DistanceMetric::Cosine);Trait Implementations§
Source§impl Clone for HnswConfig
impl Clone for HnswConfig
Source§fn clone(&self) -> HnswConfig
fn clone(&self) -> HnswConfig
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl Debug for HnswConfig
impl Debug for HnswConfig
Source§impl Default for HnswConfig
impl Default for HnswConfig
Source§impl PartialEq for HnswConfig
impl PartialEq for HnswConfig
impl StructuralPartialEq for HnswConfig
Auto Trait Implementations§
impl Freeze for HnswConfig
impl RefUnwindSafe for HnswConfig
impl Send for HnswConfig
impl Sync for HnswConfig
impl Unpin for HnswConfig
impl UnwindSafe for HnswConfig
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more