[][src]Struct spin::Mutex

pub struct Mutex<T: ?Sized> { /* fields omitted */ }

This type provides MUTual EXclusion based on spinning.


The behaviour of these lock is similar to their namesakes in std::sync. they differ on the following:

  • The lock will not be poisoned in case of failure;

Simple examples

use spin;
let spin_mutex = spin::Mutex::new(0);

// Modify the data
    let mut data = spin_mutex.lock();
    *data = 2;

// Read the data
let answer =
    let data = spin_mutex.lock();

assert_eq!(answer, 2);

Thread-safety example

use spin;
use std::sync::{Arc, Barrier};

let numthreads = 1000;
let spin_mutex = Arc::new(spin::Mutex::new(0));

// We use a barrier to ensure the readout happens after all writing
let barrier = Arc::new(Barrier::new(numthreads + 1));

for _ in (0..numthreads)
    let my_barrier = barrier.clone();
    let my_lock = spin_mutex.clone();
        let mut guard = my_lock.lock();
        *guard += 1;

        // Release the lock to prevent a deadlock


let answer = { *spin_mutex.lock() };
assert_eq!(answer, numthreads);


impl<T> Mutex<T>

Creates a new spinlock wrapping the supplied data.

May be used statically:

use spin;

static MUTEX: spin::Mutex<()> = spin::Mutex::new(());

fn demo() {
    let lock = MUTEX.lock();
    // do something with lock

Consumes this mutex, returning the underlying data.

impl<T: ?Sized> Mutex<T>

Locks the spinlock and returns a guard.

The returned value may be dereferenced for data access and the lock will be dropped when the guard falls out of scope.

let mylock = spin::Mutex::new(0);
    let mut data = mylock.lock();
    // The lock is now locked and the data can be accessed
    *data += 1;
    // The lock is implicitly dropped

Force unlock the spinlock.

This is extremely unsafe if the lock is not held by the current thread. However, this can be useful in some instances for exposing the lock to FFI that doesn't know how to deal with RAII.

If the lock isn't held, this is a no-op.

Tries to lock the mutex. If it is already locked, it will return None. Otherwise it returns a guard within Some.

Trait Implementations

impl<T: ?Sized + Debug> Debug for Mutex<T>

impl<T: ?Sized + Send> Sync for Mutex<T>

impl<T: ?Sized + Send> Send for Mutex<T>

impl<T: ?Sized + Default> Default for Mutex<T>

Blanket Implementations

impl<T, U> TryFrom for T where
    T: From<U>, 

🔬 This is a nightly-only experimental API. (try_from)

The type returned in the event of a conversion error.

impl<T> From for T

impl<T, U> TryInto for T where
    U: TryFrom<T>, 

🔬 This is a nightly-only experimental API. (try_from)

The type returned in the event of a conversion error.

impl<T, U> Into for T where
    U: From<T>, 

impl<T> Borrow for T where
    T: ?Sized

impl<T> BorrowMut for T where
    T: ?Sized

impl<T> Any for T where
    T: 'static + ?Sized