pub struct MatsubaraSampling<S: StatisticsType> { /* private fields */ }Expand description
Matsubara sampling for full frequency range (positive and negative)
General complex problem without symmetry → complex coefficients
Implementations§
Source§impl<S: StatisticsType> MatsubaraSampling<S>
impl<S: StatisticsType> MatsubaraSampling<S>
Sourcepub fn new(basis: &impl Basis<S>) -> Selfwhere
S: 'static,
pub fn new(basis: &impl Basis<S>) -> Selfwhere
S: 'static,
Create Matsubara sampling with default sampling points
Uses extrema-based sampling point selection (symmetric: positive and negative frequencies).
Sourcepub fn with_sampling_points(
basis: &impl Basis<S>,
sampling_points: Vec<MatsubaraFreq<S>>,
) -> Selfwhere
S: 'static,
pub fn with_sampling_points(
basis: &impl Basis<S>,
sampling_points: Vec<MatsubaraFreq<S>>,
) -> Selfwhere
S: 'static,
Create Matsubara sampling with custom sampling points
Sourcepub fn from_matrix(
sampling_points: Vec<MatsubaraFreq<S>>,
matrix: DTensor<Complex<f64>, 2>,
) -> Self
pub fn from_matrix( sampling_points: Vec<MatsubaraFreq<S>>, matrix: DTensor<Complex<f64>, 2>, ) -> Self
Create Matsubara sampling with custom sampling points and pre-computed matrix
This constructor is useful when the sampling matrix is already computed (e.g., from external sources or for testing).
§Arguments
sampling_points- Matsubara frequency sampling pointsmatrix- Pre-computed sampling matrix (n_points × basis_size)
§Returns
A new MatsubaraSampling object
§Panics
Panics if sampling_points is empty or if matrix dimensions don’t match
Sourcepub fn sampling_points(&self) -> &[MatsubaraFreq<S>]
pub fn sampling_points(&self) -> &[MatsubaraFreq<S>]
Get sampling points
Sourcepub fn n_sampling_points(&self) -> usize
pub fn n_sampling_points(&self) -> usize
Number of sampling points
Sourcepub fn basis_size(&self) -> usize
pub fn basis_size(&self) -> usize
Basis size
Sourcepub fn evaluate_nd<T: MatsubaraCoeffs>(
&self,
backend: Option<&GemmBackendHandle>,
coeffs: &Slice<T, DynRank>,
dim: usize,
) -> Tensor<Complex<f64>, DynRank>
pub fn evaluate_nd<T: MatsubaraCoeffs>( &self, backend: Option<&GemmBackendHandle>, coeffs: &Slice<T, DynRank>, dim: usize, ) -> Tensor<Complex<f64>, DynRank>
Evaluate N-dimensional coefficients at Matsubara sampling points
This method dispatches to the appropriate implementation based on the
coefficient type at compile time using the MatsubaraCoeffs trait.
§Type Parameter
T- Must implementMatsubaraCoeffs(currentlyf64orComplex<f64>)
§Arguments
backend- Optional GEMM backend handlecoeffs- N-dimensional tensor of basis coefficientsdim- Dimension along which to evaluate
§Returns
N-dimensional tensor of complex values at Matsubara frequencies
Sourcepub fn evaluate_nd_real(
&self,
backend: Option<&GemmBackendHandle>,
coeffs: &Tensor<f64, DynRank>,
dim: usize,
) -> Tensor<Complex<f64>, DynRank>
pub fn evaluate_nd_real( &self, backend: Option<&GemmBackendHandle>, coeffs: &Tensor<f64, DynRank>, dim: usize, ) -> Tensor<Complex<f64>, DynRank>
Evaluate real basis coefficients at Matsubara sampling points (N-dimensional)
This method takes real coefficients and produces complex values, useful when working with symmetry-exploiting representations or real-valued IR coefficients.
§Arguments
backend- Optional GEMM backend handle (None uses default)coeffs- N-dimensional tensor of real basis coefficientsdim- Dimension along which to evaluate (must have size = basis_size)
§Returns
N-dimensional tensor of complex values at Matsubara frequencies
Sourcepub fn fit_nd(
&self,
backend: Option<&GemmBackendHandle>,
values: &Tensor<Complex<f64>, DynRank>,
dim: usize,
) -> Tensor<Complex<f64>, DynRank>
pub fn fit_nd( &self, backend: Option<&GemmBackendHandle>, values: &Tensor<Complex<f64>, DynRank>, dim: usize, ) -> Tensor<Complex<f64>, DynRank>
Fit N-dimensional array of complex values to complex basis coefficients
§Arguments
backend- Optional GEMM backend handle (None uses default)values- N-dimensional tensor of complex values at Matsubara frequenciesdim- Dimension along which to fit (must have size = n_sampling_points)
§Returns
N-dimensional tensor of complex basis coefficients
Sourcepub fn fit_nd_real(
&self,
backend: Option<&GemmBackendHandle>,
values: &Tensor<Complex<f64>, DynRank>,
dim: usize,
) -> Tensor<f64, DynRank>
pub fn fit_nd_real( &self, backend: Option<&GemmBackendHandle>, values: &Tensor<Complex<f64>, DynRank>, dim: usize, ) -> Tensor<f64, DynRank>
Fit N-dimensional array of complex values to real basis coefficients
This method fits complex Matsubara values to real IR coefficients. Takes the real part of the least-squares solution.
§Arguments
backend- Optional GEMM backend handle (None uses default)values- N-dimensional tensor of complex values at Matsubara frequenciesdim- Dimension along which to fit (must have size = n_sampling_points)
§Returns
N-dimensional tensor of real basis coefficients
Sourcepub fn evaluate_nd_to<T: MatsubaraCoeffs>(
&self,
backend: Option<&GemmBackendHandle>,
coeffs: &Slice<T, DynRank>,
dim: usize,
out: &mut Tensor<Complex<f64>, DynRank>,
)
pub fn evaluate_nd_to<T: MatsubaraCoeffs>( &self, backend: Option<&GemmBackendHandle>, coeffs: &Slice<T, DynRank>, dim: usize, out: &mut Tensor<Complex<f64>, DynRank>, )
Evaluate basis coefficients at Matsubara sampling points (N-dimensional) with in-place output
§Type Parameters
T- Coefficient type (f64 or Complex)
§Arguments
coeffs- N-dimensional tensor withcoeffs.shape().dim(dim) == basis_sizedim- Dimension along which to evaluate (0-indexed)out- Output tensor without.shape().dim(dim) == n_sampling_points(Complex)
Sourcepub fn fit_nd_to(
&self,
backend: Option<&GemmBackendHandle>,
values: &Tensor<Complex<f64>, DynRank>,
dim: usize,
out: &mut Tensor<Complex<f64>, DynRank>,
)
pub fn fit_nd_to( &self, backend: Option<&GemmBackendHandle>, values: &Tensor<Complex<f64>, DynRank>, dim: usize, out: &mut Tensor<Complex<f64>, DynRank>, )
Fit N-dimensional complex values to complex coefficients with in-place output
§Arguments
values- N-dimensional tensor withvalues.shape().dim(dim) == n_sampling_pointsdim- Dimension along which to fit (0-indexed)out- Output tensor without.shape().dim(dim) == basis_size(Complex)
Trait Implementations§
Source§impl<S: StatisticsType> InplaceFitter for MatsubaraSampling<S>
InplaceFitter implementation for MatsubaraSampling
impl<S: StatisticsType> InplaceFitter for MatsubaraSampling<S>
InplaceFitter implementation for MatsubaraSampling
Delegates to ComplexMatrixFitter which supports:
- zz: Complex input → Complex output (full support)
- dz: Real input → Complex output (evaluate only)
- zd: Complex input → Real output (fit only, takes real part)
Source§fn basis_size(&self) -> usize
fn basis_size(&self) -> usize
Source§fn evaluate_nd_dz_to(
&self,
backend: Option<&GemmBackendHandle>,
coeffs: &Slice<f64, DynRank>,
dim: usize,
out: &mut ViewMut<'_, Complex<f64>, DynRank>,
) -> bool
fn evaluate_nd_dz_to( &self, backend: Option<&GemmBackendHandle>, coeffs: &Slice<f64, DynRank>, dim: usize, out: &mut ViewMut<'_, Complex<f64>, DynRank>, ) -> bool
Source§fn evaluate_nd_zz_to(
&self,
backend: Option<&GemmBackendHandle>,
coeffs: &Slice<Complex<f64>, DynRank>,
dim: usize,
out: &mut ViewMut<'_, Complex<f64>, DynRank>,
) -> bool
fn evaluate_nd_zz_to( &self, backend: Option<&GemmBackendHandle>, coeffs: &Slice<Complex<f64>, DynRank>, dim: usize, out: &mut ViewMut<'_, Complex<f64>, DynRank>, ) -> bool
Source§fn fit_nd_zd_to(
&self,
backend: Option<&GemmBackendHandle>,
values: &Slice<Complex<f64>, DynRank>,
dim: usize,
out: &mut ViewMut<'_, f64, DynRank>,
) -> bool
fn fit_nd_zd_to( &self, backend: Option<&GemmBackendHandle>, values: &Slice<Complex<f64>, DynRank>, dim: usize, out: &mut ViewMut<'_, f64, DynRank>, ) -> bool
Source§fn fit_nd_zz_to(
&self,
backend: Option<&GemmBackendHandle>,
values: &Slice<Complex<f64>, DynRank>,
dim: usize,
out: &mut ViewMut<'_, Complex<f64>, DynRank>,
) -> bool
fn fit_nd_zz_to( &self, backend: Option<&GemmBackendHandle>, values: &Slice<Complex<f64>, DynRank>, dim: usize, out: &mut ViewMut<'_, Complex<f64>, DynRank>, ) -> bool
Source§fn evaluate_nd_dd_to(
&self,
backend: Option<&GemmBackendHandle>,
coeffs: &Slice<f64, DynRank>,
dim: usize,
out: &mut ViewMut<'_, f64, DynRank>,
) -> bool
fn evaluate_nd_dd_to( &self, backend: Option<&GemmBackendHandle>, coeffs: &Slice<f64, DynRank>, dim: usize, out: &mut ViewMut<'_, f64, DynRank>, ) -> bool
Source§fn evaluate_nd_zd_to(
&self,
backend: Option<&GemmBackendHandle>,
coeffs: &Slice<Complex<f64>, DynRank>,
dim: usize,
out: &mut ViewMut<'_, f64, DynRank>,
) -> bool
fn evaluate_nd_zd_to( &self, backend: Option<&GemmBackendHandle>, coeffs: &Slice<Complex<f64>, DynRank>, dim: usize, out: &mut ViewMut<'_, f64, DynRank>, ) -> bool
Auto Trait Implementations§
impl<S> !Freeze for MatsubaraSampling<S>
impl<S> !RefUnwindSafe for MatsubaraSampling<S>
impl<S> Send for MatsubaraSampling<S>where
S: Send,
impl<S> !Sync for MatsubaraSampling<S>
impl<S> Unpin for MatsubaraSampling<S>where
S: Unpin,
impl<S> UnwindSafe for MatsubaraSampling<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> DistributionExt for Twhere
T: ?Sized,
impl<T> DistributionExt for Twhere
T: ?Sized,
Source§impl<T> IntoCloned<T> for T
impl<T> IntoCloned<T> for T
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self to the equivalent element of its superset.