Struct smoothed_online_convex_optimization::problem::SimplifiedSmoothedConvexOptimization [−][src]
pub struct SimplifiedSmoothedConvexOptimization<'a, T, C, D> {
pub d: i32,
pub t_end: i32,
pub bounds: Vec<T>,
pub switching_cost: Vec<f64>,
pub hitting_cost: CostFn<'a, Config<T>, C, D>,
}
Expand description
Simplified Smoothed Convex Optimization (SSCO).
- decision space is lower bounded by $\mathbf{0}$
- movement costs are a dimension-dependently scaled Manhattan distance
Fields
d: i32
Number of dimensions.
t_end: i32
Finite, positive time horizon.
bounds: Vec<T>
Vector of upper bounds of each dimension.
switching_cost: Vec<f64>
Vector of positive real constants resembling the switching cost of each dimension.
hitting_cost: CostFn<'a, Config<T>, C, D>
Non-negative convex cost functions.
Implementations
impl<'a, T, C, D> SimplifiedSmoothedConvexOptimization<'a, T, C, D> where
T: Value<'a>,
C: ModelOutputSuccess + 'a,
D: ModelOutputFailure + 'a,
impl<'a, T, C, D> SimplifiedSmoothedConvexOptimization<'a, T, C, D> where
T: Value<'a>,
C: ModelOutputSuccess + 'a,
D: ModelOutputFailure + 'a,
Convert to an instance of Smoothed Convex Optimization. This assumes that time slots are added after this conversion.
Trait Implementations
impl<'a, T, C, D> BaseProblem for SimplifiedSmoothedConvexOptimization<'a, T, C, D> where
T: Value<'a>,
C: Clone,
D: Clone,
impl<'a, T, C, D> BaseProblem for SimplifiedSmoothedConvexOptimization<'a, T, C, D> where
T: Value<'a>,
C: Clone,
D: Clone,
impl<'a, C, D> DefaultGivenOnlineProblem<f64, SimplifiedSmoothedConvexOptimization<'a, f64, C, D>, C, D> for Memory where
C: ModelOutputSuccess,
D: ModelOutputFailure,
impl<'a, C, D> DefaultGivenOnlineProblem<f64, SimplifiedSmoothedConvexOptimization<'a, f64, C, D>, C, D> for Memory where
C: ModelOutputSuccess,
D: ModelOutputFailure,
impl<'a, T> Model<T, SimplifiedSmoothedConvexOptimization<'a, T, DataCenterModelOutputSuccess, DataCenterModelOutputFailure>, DataCenterOfflineInput, DataCenterOnlineInput, DataCenterModelOutputSuccess, DataCenterModelOutputFailure> for DataCenterModel where
T: Value<'a>,
impl<'a, T> Model<T, SimplifiedSmoothedConvexOptimization<'a, T, DataCenterModelOutputSuccess, DataCenterModelOutputFailure>, DataCenterOfflineInput, DataCenterOnlineInput, DataCenterModelOutputSuccess, DataCenterModelOutputFailure> for DataCenterModel where
T: Value<'a>,
fn to(
&self,
_: DataCenterOfflineInput
) -> SimplifiedSmoothedConvexOptimization<'a, T, DataCenterModelOutputSuccess, DataCenterModelOutputFailure>
fn to(
&self,
_: DataCenterOfflineInput
) -> SimplifiedSmoothedConvexOptimization<'a, T, DataCenterModelOutputSuccess, DataCenterModelOutputFailure>
Generates an offline problem instance given some $input$ (with certainty).
fn update(
&self,
o: &mut Online<SimplifiedSmoothedConvexOptimization<'a, T, DataCenterModelOutputSuccess, DataCenterModelOutputFailure>>,
_: DataCenterOnlineInput
)
fn update(
&self,
o: &mut Online<SimplifiedSmoothedConvexOptimization<'a, T, DataCenterModelOutputSuccess, DataCenterModelOutputFailure>>,
_: DataCenterOnlineInput
)
Performs an online update of the given problem instance $o$ with some $input$ (which may be uncertain).
impl<'a, T, C, D> Problem<T, C, D> for SimplifiedSmoothedConvexOptimization<'a, T, C, D> where
T: Value<'a>,
C: ModelOutputSuccess,
D: ModelOutputFailure,
impl<'a, T, C, D> Problem<T, C, D> for SimplifiedSmoothedConvexOptimization<'a, T, C, D> where
T: Value<'a>,
C: ModelOutputSuccess,
D: ModelOutputFailure,
Objective function. Calculates the cost of a schedule.
fn inverted_objective_function<'a>(
&self,
xs: &Schedule<T>
) -> Result<Cost<C, D>> where
T: Value<'a>,
fn inverted_objective_function<'a>(
&self,
xs: &Schedule<T>
) -> Result<Cost<C, D>> where
T: Value<'a>,
Inverted Objective function. Calculates the cost of a schedule. Pays the switching cost for powering down rather than powering up. Read more
$\alpha$-unfair Objective function. Calculates the cost of a schedule.
Objective function starting from an initial configuration other than $\mathbf{0}$.
fn _objective_function_with_default<'a>(
&self,
xs: &Schedule<T>,
default: &Config<T>,
alpha: f64,
inverted: bool
) -> Result<Cost<C, D>> where
T: Value<'a>,
Movement in the decision space.
impl<'a, T, C, D> ResettableProblem<'a, T> for SimplifiedSmoothedConvexOptimization<'a, T, C, D> where
T: Value<'a>,
C: ModelOutputSuccess,
D: ModelOutputFailure,
impl<'a, T, C, D> ResettableProblem<'a, T> for SimplifiedSmoothedConvexOptimization<'a, T, C, D> where
T: Value<'a>,
C: ModelOutputSuccess,
D: ModelOutputFailure,
Shifts problem instance to some new initial time $t_start$.
impl<'a, T, C, D> VerifiableProblem for SimplifiedSmoothedConvexOptimization<'a, T, C, D> where
T: Value<'a>,
impl<'a, T, C, D> VerifiableProblem for SimplifiedSmoothedConvexOptimization<'a, T, C, D> where
T: Value<'a>,
Auto Trait Implementations
impl<'a, T, C, D> !RefUnwindSafe for SimplifiedSmoothedConvexOptimization<'a, T, C, D>
impl<'a, T, C, D> Send for SimplifiedSmoothedConvexOptimization<'a, T, C, D> where
T: Send,
impl<'a, T, C, D> Sync for SimplifiedSmoothedConvexOptimization<'a, T, C, D> where
T: Sync,
impl<'a, T, C, D> Unpin for SimplifiedSmoothedConvexOptimization<'a, T, C, D> where
T: Unpin,
impl<'a, T, C, D> !UnwindSafe for SimplifiedSmoothedConvexOptimization<'a, T, C, D>
Blanket Implementations
Mutably borrows from an owned value. Read more
type Output = T
type Output = T
Should always be Self
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
pub fn is_in_subset(&self) -> bool
pub fn is_in_subset(&self) -> bool
Checks if self
is actually part of its subset T
(and can be converted to it).
pub fn to_subset_unchecked(&self) -> SS
pub fn to_subset_unchecked(&self) -> SS
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
pub fn from_subset(element: &SS) -> SP
pub fn from_subset(element: &SS) -> SP
The inclusion map: converts self
to the equivalent element of its superset.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
pub fn is_in_subset(&self) -> bool
pub fn is_in_subset(&self) -> bool
Checks if self
is actually part of its subset T
(and can be converted to it).
pub fn to_subset_unchecked(&self) -> SS
pub fn to_subset_unchecked(&self) -> SS
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
pub fn from_subset(element: &SS) -> SP
pub fn from_subset(element: &SS) -> SP
The inclusion map: converts self
to the equivalent element of its superset.