Struct snarkvm_wasm::alloc::System
1.28.0 · source · pub struct System;
Expand description
The default memory allocator provided by the operating system.
This is based on malloc
on Unix platforms and HeapAlloc
on Windows,
plus related functions. However, it is not valid to mix use of the backing
system allocator with System
, as this implementation may include extra
work, such as to serve alignment requests greater than the alignment
provided directly by the backing system allocator.
This type implements the GlobalAlloc
trait and Rust programs by default
work as if they had this definition:
use std::alloc::System;
#[global_allocator]
static A: System = System;
fn main() {
let a = Box::new(4); // Allocates from the system allocator.
println!("{a}");
}
You can also define your own wrapper around System
if you’d like, such as
keeping track of the number of all bytes allocated:
use std::alloc::{System, GlobalAlloc, Layout};
use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
struct Counter;
static ALLOCATED: AtomicUsize = AtomicUsize::new(0);
unsafe impl GlobalAlloc for Counter {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
let ret = System.alloc(layout);
if !ret.is_null() {
ALLOCATED.fetch_add(layout.size(), SeqCst);
}
ret
}
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
System.dealloc(ptr, layout);
ALLOCATED.fetch_sub(layout.size(), SeqCst);
}
}
#[global_allocator]
static A: Counter = Counter;
fn main() {
println!("allocated bytes before main: {}", ALLOCATED.load(SeqCst));
}
It can also be used directly to allocate memory independently of whatever
global allocator has been selected for a Rust program. For example if a Rust
program opts in to using jemalloc as the global allocator, System
will
still allocate memory using malloc
and HeapAlloc
.
Trait Implementations
sourceimpl Allocator for System
impl Allocator for System
sourcefn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError>
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError>
allocator_api
)sourcefn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError>
fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError>
allocator_api
)allocate
, but also ensures that the returned memory is zero-initialized. Read moresourceunsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout)
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout)
allocator_api
)ptr
. Read moresourceunsafe fn grow(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout
) -> Result<NonNull<[u8]>, AllocError>
unsafe fn grow(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout
) -> Result<NonNull<[u8]>, AllocError>
allocator_api
)sourceunsafe fn grow_zeroed(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout
) -> Result<NonNull<[u8]>, AllocError>
unsafe fn grow_zeroed(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout
) -> Result<NonNull<[u8]>, AllocError>
allocator_api
)grow
, but also ensures that the new contents are set to zero before being
returned. Read moresourceimpl GlobalAlloc for System
impl GlobalAlloc for System
sourceunsafe fn alloc(&self, layout: Layout) -> *mut u8
unsafe fn alloc(&self, layout: Layout) -> *mut u8
layout
. Read moresourceunsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8
unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8
alloc
, but also ensures that the contents
are set to zero before being returned. Read moreimpl Copy for System
Auto Trait Implementations
impl RefUnwindSafe for System
impl Send for System
impl Sync for System
impl Unpin for System
impl UnwindSafe for System
Blanket Implementations
sourceimpl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
sourceimpl<T> Instrument for T
impl<T> Instrument for T
sourcefn instrument(self, span: Span) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>impl<T> Future for Instrumented<T>where
T: Future, type Output = <T as Future>::Output;
fn instrument(self, span: Span) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>impl<T> Future for Instrumented<T>where
T: Future, type Output = <T as Future>::Output;
T: Future, type Output = <T as Future>::Output;
sourcefn in_current_span(self) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>impl<T> Future for Instrumented<T>where
T: Future, type Output = <T as Future>::Output;
fn in_current_span(self) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>impl<T> Future for Instrumented<T>where
T: Future, type Output = <T as Future>::Output;
T: Future, type Output = <T as Future>::Output;
impl<T> Pointable for T
impl<T> Pointable for T
impl<V, T> VZip<V> for Twhere
V: MultiLane<T>,
impl<V, T> VZip<V> for Twhere
V: MultiLane<T>,
fn vzip(self) -> V
sourceimpl<T> WithSubscriber for T
impl<T> WithSubscriber for T
sourcefn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>ⓘNotable traits for WithDispatch<T>impl<T> Future for WithDispatch<T>where
T: Future, type Output = <T as Future>::Output;
where
S: Into<Dispatch>,
fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>ⓘNotable traits for WithDispatch<T>impl<T> Future for WithDispatch<T>where
T: Future, type Output = <T as Future>::Output;
where
S: Into<Dispatch>,
T: Future, type Output = <T as Future>::Output;
sourcefn with_current_subscriber(self) -> WithDispatch<Self>ⓘNotable traits for WithDispatch<T>impl<T> Future for WithDispatch<T>where
T: Future, type Output = <T as Future>::Output;
fn with_current_subscriber(self) -> WithDispatch<Self>ⓘNotable traits for WithDispatch<T>impl<T> Future for WithDispatch<T>where
T: Future, type Output = <T as Future>::Output;
T: Future, type Output = <T as Future>::Output;