Struct snarkvm_wasm::EvaluationDomain[][src]

pub struct EvaluationDomain<F> where
    F: PrimeField
{ pub size: u64, pub log_size_of_group: u32, pub size_as_field_element: F, pub size_inv: F, pub group_gen: F, pub group_gen_inv: F, pub generator_inv: F, }

Defines a domain over which finite field (I)FFTs can be performed. Works only for fields that have a large multiplicative subgroup of size that is a power-of-2.

Fields

size: u64

The size of the domain.

log_size_of_group: u32

log_2(self.size).

size_as_field_element: F

Size of the domain as a field element.

size_inv: F

Inverse of the size in the field.

group_gen: F

A generator of the subgroup.

group_gen_inv: F

Inverse of the generator of the subgroup.

generator_inv: F

Multiplicative generator of the finite field.

Implementations

impl<F> EvaluationDomain<F> where
    F: PrimeField
[src]

pub fn sample_element_outside_domain<R>(&self, rng: &mut R) -> F where
    R: Rng
[src]

Sample an element that is not in the domain.

pub fn new(num_coeffs: usize) -> Option<EvaluationDomain<F>>[src]

Construct a domain that is large enough for evaluations of a polynomial having num_coeffs coefficients.

pub fn compute_size_of_domain(num_coeffs: usize) -> Option<usize>[src]

Return the size of a domain that is large enough for evaluations of a polynomial having num_coeffs coefficients.

pub fn size(&self) -> usize[src]

Return the size of self.

pub fn fft(&self, coeffs: &[F]) -> Vec<F, Global>[src]

Compute a FFT.

pub fn fft_in_place(&self, coeffs: &mut Vec<F, Global>)[src]

Compute a FFT, modifying the vector in place.

pub fn ifft(&self, evals: &[F]) -> Vec<F, Global>[src]

Compute a IFFT.

pub fn ifft_in_place(&self, evals: &mut Vec<F, Global>)[src]

Compute a IFFT, modifying the vector in place.

pub fn coset_fft(&self, coeffs: &[F]) -> Vec<F, Global>[src]

Compute a FFT over a coset of the domain.

pub fn coset_fft_in_place(&self, coeffs: &mut Vec<F, Global>)[src]

Compute a FFT over a coset of the domain, modifying the input vector in place.

pub fn coset_ifft(&self, evals: &[F]) -> Vec<F, Global>[src]

Compute a IFFT over a coset of the domain.

pub fn coset_ifft_in_place(&self, evals: &mut Vec<F, Global>)[src]

Compute a IFFT over a coset of the domain, modifying the input vector in place.

pub fn evaluate_all_lagrange_coefficients(&self, tau: F) -> Vec<F, Global>[src]

Evaluate all the lagrange polynomials defined by this domain at the point tau.

pub fn vanishing_polynomial(&self) -> SparsePolynomial<F>[src]

Return the sparse vanishing polynomial.

pub fn evaluate_vanishing_polynomial(&self, tau: F) -> F[src]

This evaluates the vanishing polynomial for this domain at tau. For multiplicative subgroups, this polynomial is z(X) = X^self.size - 1.

pub fn elements(&self) -> Elements<F>

Notable traits for Elements<F>

impl<F> Iterator for Elements<F> where
    F: PrimeField
type Item = F;
[src]

Return an iterator over the elements of the domain.

pub fn divide_by_vanishing_poly_on_coset_in_place(&self, evals: &mut [F])[src]

The target polynomial is the zero polynomial in our evaluation domain, so we must perform division over a coset.

pub fn reindex_by_subdomain(
    &self,
    other: EvaluationDomain<F>,
    index: usize
) -> usize
[src]

Given an index which assumes the first elements of this domain are the elements of another (sub)domain with size size_s, this returns the actual index into this domain.

#[must_use]pub fn mul_polynomials_in_evaluation_domain(
    &self,
    self_evals: &[F],
    other_evals: &[F]
) -> Vec<F, Global>
[src]

Perform O(n) multiplication of two polynomials that are presented by their evaluations in the domain. Returns the evaluations of the product over the domain.

pub fn roots_of_unity(&self, root: F) -> Vec<F, Global>[src]

Computes the first self.size / 2 roots of unity.

Trait Implementations

impl<F> CanonicalDeserialize for EvaluationDomain<F> where
    F: PrimeField
[src]

impl<F> CanonicalSerialize for EvaluationDomain<F> where
    F: PrimeField
[src]

impl<F> Clone for EvaluationDomain<F> where
    F: Clone + PrimeField
[src]

impl<F> Copy for EvaluationDomain<F> where
    F: Copy + PrimeField
[src]

impl<F> Debug for EvaluationDomain<F> where
    F: PrimeField
[src]

impl<F> Eq for EvaluationDomain<F> where
    F: Eq + PrimeField
[src]

impl<F> Hash for EvaluationDomain<F> where
    F: Hash + PrimeField
[src]

impl<F> PartialEq<EvaluationDomain<F>> for EvaluationDomain<F> where
    F: PartialEq<F> + PrimeField
[src]

impl<F> StructuralEq for EvaluationDomain<F> where
    F: PrimeField
[src]

impl<F> StructuralPartialEq for EvaluationDomain<F> where
    F: PrimeField
[src]

Auto Trait Implementations

impl<F> RefUnwindSafe for EvaluationDomain<F> where
    F: RefUnwindSafe

impl<F> Send for EvaluationDomain<F>

impl<F> Sync for EvaluationDomain<F>

impl<F> Unpin for EvaluationDomain<F> where
    F: Unpin

impl<F> UnwindSafe for EvaluationDomain<F> where
    F: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<Q, K> Equivalent<K> for Q where
    K: Borrow<Q> + ?Sized,
    Q: Eq + ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Pointable for T

type Init = T

The type for initializers.

impl<T> Same<T> for T

type Output = T

Should always be Self

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>,