pub struct StandardScaler<T: Number + RealNumber> { /* private fields */ }
Expand description
With the StandardScaler
data can be adjusted so
that every column has a mean of zero and a standard
deviation of one. This can improve model training for
scaling sensitive models like neural network or nearest
neighbors based models.
Trait Implementations§
Source§impl<T: Clone + Number + RealNumber> Clone for StandardScaler<T>
impl<T: Clone + Number + RealNumber> Clone for StandardScaler<T>
Source§fn clone(&self) -> StandardScaler<T>
fn clone(&self) -> StandardScaler<T>
Returns a copy of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreSource§impl<T: Debug + Number + RealNumber> Debug for StandardScaler<T>
impl<T: Debug + Number + RealNumber> Debug for StandardScaler<T>
Source§impl<T: Default + Number + RealNumber> Default for StandardScaler<T>
impl<T: Default + Number + RealNumber> Default for StandardScaler<T>
Source§fn default() -> StandardScaler<T>
fn default() -> StandardScaler<T>
Returns the “default value” for a type. Read more
Source§impl<T: PartialEq + Number + RealNumber> PartialEq for StandardScaler<T>
impl<T: PartialEq + Number + RealNumber> PartialEq for StandardScaler<T>
Source§impl<T: Number + RealNumber, M: Array2<T>> Transformer<M> for StandardScaler<T>
During transform
the StandardScaler
applies the summary statistics
computed during fit
to set the mean of each column to zero and the
standard deviation to one.
impl<T: Number + RealNumber, M: Array2<T>> Transformer<M> for StandardScaler<T>
During transform
the StandardScaler
applies the summary statistics
computed during fit
to set the mean of each column to zero and the
standard deviation to one.
Source§impl<T: Number + RealNumber, M: Array2<T>> UnsupervisedEstimator<M, StandardScalerParameters> for StandardScaler<T>
During fit
the StandardScaler
computes the column means and standard deviation.
impl<T: Number + RealNumber, M: Array2<T>> UnsupervisedEstimator<M, StandardScalerParameters> for StandardScaler<T>
During fit
the StandardScaler
computes the column means and standard deviation.
impl<T: Number + RealNumber> StructuralPartialEq for StandardScaler<T>
Auto Trait Implementations§
impl<T> Freeze for StandardScaler<T>
impl<T> RefUnwindSafe for StandardScaler<T>where
T: RefUnwindSafe,
impl<T> Send for StandardScaler<T>where
T: Send,
impl<T> Sync for StandardScaler<T>where
T: Sync,
impl<T> Unpin for StandardScaler<T>where
T: Unpin,
impl<T> UnwindSafe for StandardScaler<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more