pub struct LogisticRegression<TX: Number + FloatNumber + RealNumber, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> { /* private fields */ }
Expand description
Logistic Regression
Implementations§
Source§impl<TX: Number + FloatNumber + RealNumber, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> LogisticRegression<TX, TY, X, Y>
impl<TX: Number + FloatNumber + RealNumber, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> LogisticRegression<TX, TY, X, Y>
Sourcepub fn fit(
x: &X,
y: &Y,
parameters: LogisticRegressionParameters<TX>,
) -> Result<LogisticRegression<TX, TY, X, Y>, Failed>
pub fn fit( x: &X, y: &Y, parameters: LogisticRegressionParameters<TX>, ) -> Result<LogisticRegression<TX, TY, X, Y>, Failed>
Fits Logistic Regression to your data.
x
- NxM matrix with N observations and M features in each observation.y
- target class valuesparameters
- other parameters, useDefault::default()
to set parameters to default values.
Sourcepub fn predict(&self, x: &X) -> Result<Y, Failed>
pub fn predict(&self, x: &X) -> Result<Y, Failed>
Predict class labels for samples in x
.
x
- KxM data where K is number of observations and M is number of features.
Sourcepub fn coefficients(&self) -> &X
pub fn coefficients(&self) -> &X
Get estimates regression coefficients, this create a sharable reference
Trait Implementations§
Source§impl<TX: Debug + Number + FloatNumber + RealNumber, TY: Debug + Number + Ord, X: Debug + Array2<TX>, Y: Debug + Array1<TY>> Debug for LogisticRegression<TX, TY, X, Y>
impl<TX: Debug + Number + FloatNumber + RealNumber, TY: Debug + Number + Ord, X: Debug + Array2<TX>, Y: Debug + Array1<TY>> Debug for LogisticRegression<TX, TY, X, Y>
Source§impl<TX: Number + FloatNumber + RealNumber, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> PartialEq for LogisticRegression<TX, TY, X, Y>
impl<TX: Number + FloatNumber + RealNumber, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> PartialEq for LogisticRegression<TX, TY, X, Y>
Source§impl<TX: Number + FloatNumber + RealNumber, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> Predictor<X, Y> for LogisticRegression<TX, TY, X, Y>
impl<TX: Number + FloatNumber + RealNumber, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> Predictor<X, Y> for LogisticRegression<TX, TY, X, Y>
Source§impl<TX: Number + FloatNumber + RealNumber, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> SupervisedEstimator<X, Y, LogisticRegressionParameters<TX>> for LogisticRegression<TX, TY, X, Y>
impl<TX: Number + FloatNumber + RealNumber, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> SupervisedEstimator<X, Y, LogisticRegressionParameters<TX>> for LogisticRegression<TX, TY, X, Y>
Auto Trait Implementations§
impl<TX, TY, X, Y> Freeze for LogisticRegression<TX, TY, X, Y>where
X: Freeze,
impl<TX, TY, X, Y> RefUnwindSafe for LogisticRegression<TX, TY, X, Y>
impl<TX, TY, X, Y> Send for LogisticRegression<TX, TY, X, Y>
impl<TX, TY, X, Y> Sync for LogisticRegression<TX, TY, X, Y>
impl<TX, TY, X, Y> Unpin for LogisticRegression<TX, TY, X, Y>
impl<TX, TY, X, Y> UnwindSafe for LogisticRegression<TX, TY, X, Y>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more