pub struct RandomForestClassifier<TX: Number + FloatNumber + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> { /* private fields */ }Expand description
Random Forest Classifier
Implementations
sourceimpl<TX: FloatNumber + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> RandomForestClassifier<TX, TY, X, Y>
impl<TX: FloatNumber + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> RandomForestClassifier<TX, TY, X, Y>
sourcepub fn fit(
x: &X,
y: &Y,
parameters: RandomForestClassifierParameters
) -> Result<RandomForestClassifier<TX, TY, X, Y>, Failed>
pub fn fit(
x: &X,
y: &Y,
parameters: RandomForestClassifierParameters
) -> Result<RandomForestClassifier<TX, TY, X, Y>, Failed>
Build a forest of trees from the training set.
x- NxM matrix with N observations and M features in each observation.y- the target class values
sourcepub fn predict(&self, x: &X) -> Result<Y, Failed>
pub fn predict(&self, x: &X) -> Result<Y, Failed>
Predict class for x
x- KxM data where K is number of observations and M is number of features.
sourcepub fn predict_oob(&self, x: &X) -> Result<Y, Failed>
pub fn predict_oob(&self, x: &X) -> Result<Y, Failed>
Predict OOB classes for x. x is expected to be equal to the dataset used in training.
Trait Implementations
sourceimpl<TX: Debug + Number + FloatNumber + PartialOrd, TY: Debug + Number + Ord, X: Debug + Array2<TX>, Y: Debug + Array1<TY>> Debug for RandomForestClassifier<TX, TY, X, Y>
impl<TX: Debug + Number + FloatNumber + PartialOrd, TY: Debug + Number + Ord, X: Debug + Array2<TX>, Y: Debug + Array1<TY>> Debug for RandomForestClassifier<TX, TY, X, Y>
sourceimpl<TX: Number + FloatNumber + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> PartialEq<RandomForestClassifier<TX, TY, X, Y>> for RandomForestClassifier<TX, TY, X, Y>
impl<TX: Number + FloatNumber + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> PartialEq<RandomForestClassifier<TX, TY, X, Y>> for RandomForestClassifier<TX, TY, X, Y>
sourceimpl<TX: Number + FloatNumber + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> Predictor<X, Y> for RandomForestClassifier<TX, TY, X, Y>
impl<TX: Number + FloatNumber + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> Predictor<X, Y> for RandomForestClassifier<TX, TY, X, Y>
sourceimpl<TX: Number + FloatNumber + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> SupervisedEstimator<X, Y, RandomForestClassifierParameters> for RandomForestClassifier<TX, TY, X, Y>
impl<TX: Number + FloatNumber + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> SupervisedEstimator<X, Y, RandomForestClassifierParameters> for RandomForestClassifier<TX, TY, X, Y>
Auto Trait Implementations
impl<TX, TY, X, Y> RefUnwindSafe for RandomForestClassifier<TX, TY, X, Y>where
TX: RefUnwindSafe,
TY: RefUnwindSafe,
X: RefUnwindSafe,
Y: RefUnwindSafe,
impl<TX, TY, X, Y> Send for RandomForestClassifier<TX, TY, X, Y>where
TX: Send,
TY: Send,
X: Send,
Y: Send,
impl<TX, TY, X, Y> Sync for RandomForestClassifier<TX, TY, X, Y>where
TX: Sync,
TY: Sync,
X: Sync,
Y: Sync,
impl<TX, TY, X, Y> Unpin for RandomForestClassifier<TX, TY, X, Y>where
TX: Unpin,
TY: Unpin,
X: Unpin,
Y: Unpin,
impl<TX, TY, X, Y> UnwindSafe for RandomForestClassifier<TX, TY, X, Y>where
TX: UnwindSafe,
TY: UnwindSafe,
X: UnwindSafe,
Y: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more