Struct sled::Db [−][src]
pub struct Db { /* fields omitted */ }
Expand description
The sled
embedded database! Implements
Deref<Target = sled::Tree>
to refer to
a default keyspace / namespace / bucket.
Implementations
Open or create a new disk-backed Tree with its own keyspace,
accessible from the Db
via the provided identifier.
Remove a disk-backed collection.
Returns the trees names saved in this Db.
Returns true
if the database was
recovered from a previous process.
Note that database state is only
guaranteed to be present up to the
last call to flush
! Otherwise state
is synced to disk periodically if the
sync_every_ms
configuration option
is set to Some(number_of_ms_between_syncs)
or if the IO buffer gets filled to
capacity before being rotated.
Generate a monotonic ID. Not guaranteed to be
contiguous. Written to disk every idgen_persist_interval
operations, followed by a blocking flush. During recovery, we
take the last recovered generated ID and add 2x
the idgen_persist_interval
to it. While persisting, if the
previous persisted counter wasn’t synced to disk yet, we will do
a blocking flush to fsync the latest counter, ensuring
that we will never give out the same counter twice.
A database export method for all collections in the Db
,
for use in sled version upgrades. Can be used in combination
with the import
method below on a database running a later
version.
Panics
Panics if any IO problems occur while trying to perform the export.
Examples
If you want to migrate from one version of sled to another, you need to pull in both versions by using version renaming:
Cargo.toml
:
[dependencies]
sled = "0.32"
old_sled = { version = "0.31", package = "sled" }
and in your code, remember that old versions of
sled might have a different way to open them
than the current sled::open
method:
let old = old_sled::open("my_old_db")?;
// may be a different version of sled,
// the export type is version agnostic.
let new = sled::open("my_new_db")?;
let export = old.export();
new.import(export);
assert_eq!(old.checksum()?, new.checksum()?);
Imports the collections from a previous database.
Panics
Panics if any IO problems occur while trying to perform the import.
Examples
If you want to migrate from one version of sled to another, you need to pull in both versions by using version renaming:
Cargo.toml
:
[dependencies]
sled = "0.32"
old_sled = { version = "0.31", package = "sled" }
and in your code, remember that old versions of
sled might have a different way to open them
than the current sled::open
method:
let old = old_sled::open("my_old_db")?;
// may be a different version of sled,
// the export type is version agnostic.
let new = sled::open("my_new_db")?;
let export = old.export();
new.import(export);
assert_eq!(old.checksum()?, new.checksum()?);
Returns the CRC32 of all keys and values in this Db.
This is O(N) and locks all underlying Trees for the duration of the entire scan.
Returns the on-disk size of the storage files for this database.
Methods from Deref<Target = Tree>
Insert a key to a new value, returning the last value if it was set.
Examples
assert_eq!(db.insert(&[1, 2, 3], vec![0]), Ok(None));
assert_eq!(db.insert(&[1, 2, 3], vec![1]), Ok(Some(sled::IVec::from(&[0]))));
pub fn transaction<F, A, E>(&self, f: F) -> TransactionResult<A, E> where
F: Fn(&TransactionalTree) -> ConflictableTransactionResult<A, E>,
pub fn transaction<F, A, E>(&self, f: F) -> TransactionResult<A, E> where
F: Fn(&TransactionalTree) -> ConflictableTransactionResult<A, E>,
Perform a multi-key serializable transaction.
Examples
// Use write-only transactions as a writebatch:
db.transaction(|tx_db| {
tx_db.insert(b"k1", b"cats")?;
tx_db.insert(b"k2", b"dogs")?;
Ok(())
})?;
// Atomically swap two items:
db.transaction(|tx_db| {
let v1_option = tx_db.remove(b"k1")?;
let v1 = v1_option.unwrap();
let v2_option = tx_db.remove(b"k2")?;
let v2 = v2_option.unwrap();
tx_db.insert(b"k1", v2)?;
tx_db.insert(b"k2", v1)?;
Ok(())
})?;
assert_eq!(&db.get(b"k1")?.unwrap(), b"dogs");
assert_eq!(&db.get(b"k2")?.unwrap(), b"cats");
A transaction may return information from an intentionally-cancelled transaction by using the abort function inside the closure in combination with the try operator.
use sled::{transaction::{abort, TransactionError, TransactionResult}, Config};
#[derive(Debug, PartialEq)]
struct MyBullshitError;
fn main() -> TransactionResult<(), MyBullshitError> {
let config = Config::new().temporary(true);
let db = config.open()?;
// Use write-only transactions as a writebatch:
let res = db.transaction(|tx_db| {
tx_db.insert(b"k1", b"cats")?;
tx_db.insert(b"k2", b"dogs")?;
// aborting will cause all writes to roll-back.
if true {
abort(MyBullshitError)?;
}
Ok(42)
}).unwrap_err();
assert_eq!(res, TransactionError::Abort(MyBullshitError));
assert_eq!(db.get(b"k1")?, None);
assert_eq!(db.get(b"k2")?, None);
Ok(())
}
Transactions also work on tuples of Tree
s,
preserving serializable ACID semantics!
In this example, we treat two trees like a
work queue, atomically apply updates to
data and move them from the unprocessed Tree
to the processed Tree
.
use sled::Transactional;
let unprocessed = db.open_tree(b"unprocessed items")?;
let processed = db.open_tree(b"processed items")?;
// An update somehow gets into the tree, which we
// later trigger the atomic processing of.
unprocessed.insert(b"k3", b"ligers")?;
// Atomically process the new item and move it
// between `Tree`s.
(&unprocessed, &processed)
.transaction(|(tx_unprocessed, tx_processed)| {
let unprocessed_item = tx_unprocessed.remove(b"k3")?.unwrap();
let mut processed_item = b"yappin' ".to_vec();
processed_item.extend_from_slice(&unprocessed_item);
tx_processed.insert(b"k3", processed_item)?;
Ok(())
})?;
assert_eq!(unprocessed.get(b"k3").unwrap(), None);
assert_eq!(&processed.get(b"k3").unwrap().unwrap(), b"yappin' ligers");
Create a new batched update that can be atomically applied.
It is possible to apply a Batch
in a transaction
as well, which is the way you can apply a Batch
to multiple Tree
s atomically.
Examples
db.insert("key_0", "val_0")?;
let mut batch = sled::Batch::default();
batch.insert("key_a", "val_a");
batch.insert("key_b", "val_b");
batch.insert("key_c", "val_c");
batch.remove("key_0");
db.apply_batch(batch)?;
// key_0 no longer exists, and key_a, key_b, and key_c
// now do exist.
Retrieve a value from the Tree
if it exists.
Examples
db.insert(&[0], vec![0])?;
assert_eq!(db.get(&[0]), Ok(Some(sled::IVec::from(vec![0]))));
assert_eq!(db.get(&[1]), Ok(None));
Delete a value, returning the old value if it existed.
Examples
db.insert(&[1], vec![1]);
assert_eq!(db.remove(&[1]), Ok(Some(sled::IVec::from(vec![1]))));
assert_eq!(db.remove(&[1]), Ok(None));
Compare and swap. Capable of unique creation, conditional modification,
or deletion. If old is None
, this will only set the value if it
doesn’t exist yet. If new is None
, will delete the value if old is
correct. If both old and new are Some
, will modify the value if
old is correct.
It returns Ok(Ok(()))
if operation finishes successfully.
If it fails it returns:
- Ok(Err(CompareAndSwapError(current, proposed)))
if operation
failed to setup a new value. CompareAndSwapError
contains
current and proposed values.
- Err(Error::Unsupported)
if the database is opened in read-only
mode.
Examples
// unique creation
assert_eq!(
db.compare_and_swap(&[1], None as Option<&[u8]>, Some(&[10])),
Ok(Ok(()))
);
// conditional modification
assert_eq!(
db.compare_and_swap(&[1], Some(&[10]), Some(&[20])),
Ok(Ok(()))
);
// failed conditional modification -- the current value is returned in
// the error variant
let operation = db.compare_and_swap(&[1], Some(&[30]), Some(&[40]));
assert!(operation.is_ok()); // the operation succeeded
let modification = operation.unwrap();
assert!(modification.is_err());
let actual_value = modification.unwrap_err();
assert_eq!(actual_value.current.map(|ivec| ivec.to_vec()), Some(vec![20]));
// conditional deletion
assert_eq!(
db.compare_and_swap(&[1], Some(&[20]), None as Option<&[u8]>),
Ok(Ok(()))
);
assert_eq!(db.get(&[1]), Ok(None));
Fetch the value, apply a function to it and return the result.
Note
This may call the function multiple times if the value has been changed from other threads in the meantime.
Examples
use sled::{Config, Error, IVec};
use std::convert::TryInto;
let config = Config::new().temporary(true);
let db = config.open()?;
fn u64_to_ivec(number: u64) -> IVec {
IVec::from(number.to_be_bytes().to_vec())
}
let zero = u64_to_ivec(0);
let one = u64_to_ivec(1);
let two = u64_to_ivec(2);
let three = u64_to_ivec(3);
fn increment(old: Option<&[u8]>) -> Option<Vec<u8>> {
let number = match old {
Some(bytes) => {
let array: [u8; 8] = bytes.try_into().unwrap();
let number = u64::from_be_bytes(array);
number + 1
}
None => 0,
};
Some(number.to_be_bytes().to_vec())
}
assert_eq!(db.update_and_fetch("counter", increment), Ok(Some(zero)));
assert_eq!(db.update_and_fetch("counter", increment), Ok(Some(one)));
assert_eq!(db.update_and_fetch("counter", increment), Ok(Some(two)));
assert_eq!(db.update_and_fetch("counter", increment), Ok(Some(three)));
Fetch the value, apply a function to it and return the previous value.
Note
This may call the function multiple times if the value has been changed from other threads in the meantime.
Examples
use sled::{Config, Error, IVec};
use std::convert::TryInto;
let config = Config::new().temporary(true);
let db = config.open()?;
fn u64_to_ivec(number: u64) -> IVec {
IVec::from(number.to_be_bytes().to_vec())
}
let zero = u64_to_ivec(0);
let one = u64_to_ivec(1);
let two = u64_to_ivec(2);
fn increment(old: Option<&[u8]>) -> Option<Vec<u8>> {
let number = match old {
Some(bytes) => {
let array: [u8; 8] = bytes.try_into().unwrap();
let number = u64::from_be_bytes(array);
number + 1
}
None => 0,
};
Some(number.to_be_bytes().to_vec())
}
assert_eq!(db.fetch_and_update("counter", increment), Ok(None));
assert_eq!(db.fetch_and_update("counter", increment), Ok(Some(zero)));
assert_eq!(db.fetch_and_update("counter", increment), Ok(Some(one)));
assert_eq!(db.fetch_and_update("counter", increment), Ok(Some(two)));
pub fn watch_prefix<P: AsRef<[u8]>>(&self, prefix: P) -> SubscriberⓘNotable traits for Subscriberimpl Iterator for Subscriber type Item = Event;impl Future for Subscriber type Output = Option<Event>;
pub fn watch_prefix<P: AsRef<[u8]>>(&self, prefix: P) -> SubscriberⓘNotable traits for Subscriberimpl Iterator for Subscriber type Item = Event;impl Future for Subscriber type Output = Option<Event>;
impl Iterator for Subscriber type Item = Event;impl Future for Subscriber type Output = Option<Event>;
Subscribe to Event
s that happen to keys that have
the specified prefix. Events for particular keys are
guaranteed to be witnessed in the same order by all
threads, but threads may witness different interleavings
of Event
s across different keys. If subscribers don’t
keep up with new writes, they will cause new writes
to block. There is a buffer of 1024 items per
Subscriber
. This can be used to build reactive
and replicated systems.
Subscriber
implements both Iterator<Item = Event>
and Future<Output=Option<Event>>
Examples
Synchronous, blocking subscriber:
// watch all events by subscribing to the empty prefix
let mut subscriber = db.watch_prefix(vec![]);
let tree_2 = db.clone();
let thread = std::thread::spawn(move || {
db.insert(vec![0], vec![1])
});
// `Subscription` implements `Iterator<Item=Event>`
for event in subscriber.take(1) {
match event {
sled::Event::Insert{ key, value } => assert_eq!(key.as_ref(), &[0]),
sled::Event::Remove {key } => {}
}
}
Aynchronous, non-blocking subscriber:
Subscription
implements Future<Output=Option<Event>>
.
while let Some(event) = (&mut subscriber).await { /* use it */ }
Synchronously flushes all dirty IO buffers and calls fsync. If this succeeds, it is guaranteed that all previous writes will be recovered if the system crashes. Returns the number of bytes flushed during this call.
Flushing can take quite a lot of time, and you should measure the performance impact of using it on realistic sustained workloads running on realistic hardware.
Asynchronously flushes all dirty IO buffers and calls fsync. If this succeeds, it is guaranteed that all previous writes will be recovered if the system crashes. Returns the number of bytes flushed during this call.
Flushing can take quite a lot of time, and you should measure the performance impact of using it on realistic sustained workloads running on realistic hardware.
Returns true
if the Tree
contains a value for
the specified key.
Examples
db.insert(&[0], vec![0])?;
assert!(db.contains_key(&[0])?);
assert!(!db.contains_key(&[1])?);
Retrieve the key and value before the provided key, if one exists.
Examples
use sled::IVec;
for i in 0..10 {
db.insert(&[i], vec![i])
.expect("should write successfully");
}
assert_eq!(db.get_lt(&[]), Ok(None));
assert_eq!(db.get_lt(&[0]), Ok(None));
assert_eq!(
db.get_lt(&[1]),
Ok(Some((IVec::from(&[0]), IVec::from(&[0]))))
);
assert_eq!(
db.get_lt(&[9]),
Ok(Some((IVec::from(&[8]), IVec::from(&[8]))))
);
assert_eq!(
db.get_lt(&[10]),
Ok(Some((IVec::from(&[9]), IVec::from(&[9]))))
);
assert_eq!(
db.get_lt(&[255]),
Ok(Some((IVec::from(&[9]), IVec::from(&[9]))))
);
Retrieve the next key and value from the Tree
after the
provided key.
Note
The order follows the Ord implementation for Vec<u8>
:
[] < [0] < [255] < [255, 0] < [255, 255] ...
To retain the ordering of numerical types use big endian reprensentation
Examples
use sled::IVec;
for i in 0..10 {
db.insert(&[i], vec![i])?;
}
assert_eq!(
db.get_gt(&[]),
Ok(Some((IVec::from(&[0]), IVec::from(&[0]))))
);
assert_eq!(
db.get_gt(&[0]),
Ok(Some((IVec::from(&[1]), IVec::from(&[1]))))
);
assert_eq!(
db.get_gt(&[1]),
Ok(Some((IVec::from(&[2]), IVec::from(&[2]))))
);
assert_eq!(
db.get_gt(&[8]),
Ok(Some((IVec::from(&[9]), IVec::from(&[9]))))
);
assert_eq!(db.get_gt(&[9]), Ok(None));
db.insert(500u16.to_be_bytes(), vec![10]);
assert_eq!(
db.get_gt(&499u16.to_be_bytes()),
Ok(Some((IVec::from(&500u16.to_be_bytes()), IVec::from(&[10]))))
);
Merge state directly into a given key’s value using the configured merge operator. This allows state to be written into a value directly, without any read-modify-write steps. Merge operators can be used to implement arbitrary data structures.
Calling merge
will return an Unsupported
error if it
is called without first setting a merge operator function.
Merge operators are shared by all instances of a particular
Tree
. Different merge operators may be set on different
Tree
s.
Examples
use sled::IVec;
fn concatenate_merge(
_key: &[u8], // the key being merged
old_value: Option<&[u8]>, // the previous value, if one existed
merged_bytes: &[u8] // the new bytes being merged in
) -> Option<Vec<u8>> { // set the new value, return None to delete
let mut ret = old_value
.map(|ov| ov.to_vec())
.unwrap_or_else(|| vec![]);
ret.extend_from_slice(merged_bytes);
Some(ret)
}
db.set_merge_operator(concatenate_merge);
let k = b"k1";
db.insert(k, vec![0]);
db.merge(k, vec![1]);
db.merge(k, vec![2]);
assert_eq!(db.get(k), Ok(Some(IVec::from(vec![0, 1, 2]))));
// Replace previously merged data. The merge function will not be called.
db.insert(k, vec![3]);
assert_eq!(db.get(k), Ok(Some(IVec::from(vec![3]))));
// Merges on non-present values will cause the merge function to be called
// with `old_value == None`. If the merge function returns something (which it
// does, in this case) a new value will be inserted.
db.remove(k);
db.merge(k, vec![4]);
assert_eq!(db.get(k), Ok(Some(IVec::from(vec![4]))));
Sets a merge operator for use with the merge
function.
Merge state directly into a given key’s value using the configured merge operator. This allows state to be written into a value directly, without any read-modify-write steps. Merge operators can be used to implement arbitrary data structures.
Panics
Calling merge
will panic if no merge operator has been
configured.
Examples
use sled::IVec;
fn concatenate_merge(
_key: &[u8], // the key being merged
old_value: Option<&[u8]>, // the previous value, if one existed
merged_bytes: &[u8] // the new bytes being merged in
) -> Option<Vec<u8>> { // set the new value, return None to delete
let mut ret = old_value
.map(|ov| ov.to_vec())
.unwrap_or_else(|| vec![]);
ret.extend_from_slice(merged_bytes);
Some(ret)
}
db.set_merge_operator(concatenate_merge);
let k = b"k1";
db.insert(k, vec![0]);
db.merge(k, vec![1]);
db.merge(k, vec![2]);
assert_eq!(db.get(k), Ok(Some(IVec::from(vec![0, 1, 2]))));
// Replace previously merged data. The merge function will not be called.
db.insert(k, vec![3]);
assert_eq!(db.get(k), Ok(Some(IVec::from(vec![3]))));
// Merges on non-present values will cause the merge function to be called
// with `old_value == None`. If the merge function returns something (which it
// does, in this case) a new value will be inserted.
db.remove(k);
db.merge(k, vec![4]);
assert_eq!(db.get(k), Ok(Some(IVec::from(vec![4]))));
Create a double-ended iterator over the tuples of keys and values in this tree.
Examples
use sled::IVec;
db.insert(&[1], vec![10]);
db.insert(&[2], vec![20]);
db.insert(&[3], vec![30]);
let mut iter = db.iter();
assert_eq!(
iter.next().unwrap(),
Ok((IVec::from(&[1]), IVec::from(&[10])))
);
assert_eq!(
iter.next().unwrap(),
Ok((IVec::from(&[2]), IVec::from(&[20])))
);
assert_eq!(
iter.next().unwrap(),
Ok((IVec::from(&[3]), IVec::from(&[30])))
);
assert_eq!(iter.next(), None);
Create a double-ended iterator over tuples of keys and values, where the keys fall within the specified range.
Examples
use sled::IVec;
db.insert(&[0], vec![0])?;
db.insert(&[1], vec![10])?;
db.insert(&[2], vec![20])?;
db.insert(&[3], vec![30])?;
db.insert(&[4], vec![40])?;
db.insert(&[5], vec![50])?;
let start: &[u8] = &[2];
let end: &[u8] = &[4];
let mut r = db.range(start..end);
assert_eq!(r.next().unwrap(), Ok((IVec::from(&[2]), IVec::from(&[20]))));
assert_eq!(r.next().unwrap(), Ok((IVec::from(&[3]), IVec::from(&[30]))));
assert_eq!(r.next(), None);
let mut r = db.range(start..end).rev();
assert_eq!(r.next().unwrap(), Ok((IVec::from(&[3]), IVec::from(&[30]))));
assert_eq!(r.next().unwrap(), Ok((IVec::from(&[2]), IVec::from(&[20]))));
assert_eq!(r.next(), None);
Create an iterator over tuples of keys and values, where the all the keys starts with the given prefix.
Examples
use sled::IVec;
db.insert(&[0, 0, 0], vec![0, 0, 0])?;
db.insert(&[0, 0, 1], vec![0, 0, 1])?;
db.insert(&[0, 0, 2], vec![0, 0, 2])?;
db.insert(&[0, 0, 3], vec![0, 0, 3])?;
db.insert(&[0, 1, 0], vec![0, 1, 0])?;
db.insert(&[0, 1, 1], vec![0, 1, 1])?;
let prefix: &[u8] = &[0, 0];
let mut r = db.scan_prefix(prefix);
assert_eq!(
r.next(),
Some(Ok((IVec::from(&[0, 0, 0]), IVec::from(&[0, 0, 0]))))
);
assert_eq!(
r.next(),
Some(Ok((IVec::from(&[0, 0, 1]), IVec::from(&[0, 0, 1]))))
);
assert_eq!(
r.next(),
Some(Ok((IVec::from(&[0, 0, 2]), IVec::from(&[0, 0, 2]))))
);
assert_eq!(
r.next(),
Some(Ok((IVec::from(&[0, 0, 3]), IVec::from(&[0, 0, 3]))))
);
assert_eq!(r.next(), None);
Returns the first key and value in the Tree
, or
None
if the Tree
is empty.
Returns the last key and value in the Tree
, or
None
if the Tree
is empty.
Atomically removes the maximum item in the Tree
instance.
Examples
db.insert(&[0], vec![0])?;
db.insert(&[1], vec![10])?;
db.insert(&[2], vec![20])?;
db.insert(&[3], vec![30])?;
db.insert(&[4], vec![40])?;
db.insert(&[5], vec![50])?;
assert_eq!(&db.pop_max()?.unwrap().0, &[5]);
assert_eq!(&db.pop_max()?.unwrap().0, &[4]);
assert_eq!(&db.pop_max()?.unwrap().0, &[3]);
assert_eq!(&db.pop_max()?.unwrap().0, &[2]);
assert_eq!(&db.pop_max()?.unwrap().0, &[1]);
assert_eq!(&db.pop_max()?.unwrap().0, &[0]);
assert_eq!(db.pop_max()?, None);
Atomically removes the minimum item in the Tree
instance.
Examples
db.insert(&[0], vec![0])?;
db.insert(&[1], vec![10])?;
db.insert(&[2], vec![20])?;
db.insert(&[3], vec![30])?;
db.insert(&[4], vec![40])?;
db.insert(&[5], vec![50])?;
assert_eq!(&db.pop_min()?.unwrap().0, &[0]);
assert_eq!(&db.pop_min()?.unwrap().0, &[1]);
assert_eq!(&db.pop_min()?.unwrap().0, &[2]);
assert_eq!(&db.pop_min()?.unwrap().0, &[3]);
assert_eq!(&db.pop_min()?.unwrap().0, &[4]);
assert_eq!(&db.pop_min()?.unwrap().0, &[5]);
assert_eq!(db.pop_min()?, None);
Returns the number of elements in this tree.
Beware: performs a full O(n) scan under the hood.
Examples
db.insert(b"a", vec![0]);
db.insert(b"b", vec![1]);
assert_eq!(db.len(), 2);
Clears the Tree
, removing all values.
Note that this is not atomic.
Trait Implementations
Auto Trait Implementations
Blanket Implementations
Mutably borrows from an owned value. Read more