Crate sklears_tree

Crate sklears_tree 

Source
Expand description

Tree-based algorithms for sklears

This crate provides implementations of tree-based machine learning algorithms including:

  • Decision Trees (CART algorithm)
  • Random Forest
  • Extra Trees

This is a simplified version focusing on core functionality.

Re-exports§

pub use config::ndarray_to_dense_matrix;
pub use config::DecisionTreeConfig;
pub use config::MaxFeatures;
pub use config::MissingValueStrategy;
pub use criteria::ConditionalTestType;
pub use criteria::FeatureType;
pub use criteria::MonotonicConstraint;
pub use criteria::SplitCriterion;
pub use decision_tree::DecisionTree;
pub use decision_tree::DecisionTreeBuilder;
pub use decision_tree::DecisionTreeClassifier;
pub use decision_tree::DecisionTreeRegressor;
pub use decision_tree::TreeValidator;
pub use node::CompactTreeNode;
pub use node::CustomSplit;
pub use node::SurrogateSplit;
pub use node::TreeNode;
pub use random_forest::RandomForestClassifier;
pub use splits::HyperplaneSplit;

Modules§

builder
Tree building algorithms and utilities
config
Configuration types and enums for decision trees
criteria
Split criteria and constraints for decision trees
decision_tree
Decision Tree implementation
node
Tree node data structures and compact representations
parallel
Parallel processing utilities for tree algorithms
prelude
Prelude module for convenient imports
random_forest
Random Forest implementation using SmartCore
splits
Split implementations for decision trees

Structs§

Trained
Marker trait for trained models
Untrained
Marker trait for untrained models