LadderNetworks

Struct LadderNetworks 

Source
pub struct LadderNetworks<S = Untrained> { /* private fields */ }
Expand description

Ladder Networks for Deep Semi-Supervised Learning

Ladder Networks are neural networks that combine supervised and unsupervised learning objectives. They use lateral connections between encoder and decoder paths to enable effective learning from both labeled and unlabeled data.

The architecture consists of:

  • An encoder path that applies noise and nonlinearities
  • A decoder path that reconstructs clean representations
  • Lateral connections that help the decoder
  • Multiple reconstruction costs at different layers

§Parameters

  • layer_sizes - Sizes of hidden layers (including input and output)
  • noise_std - Standard deviation of Gaussian noise added to each layer
  • lambda_unsupervised - Weight for unsupervised reconstruction loss
  • lambda_supervised - Weight for supervised classification loss
  • denoising_cost_weights - Weights for denoising costs at each layer
  • learning_rate - Learning rate for optimization
  • max_iter - Maximum number of training iterations
  • batch_size - Size of mini-batches for training

§Examples

use sklears_semi_supervised::LadderNetworks;
use sklears_core::traits::{Predict, Fit};


let X = array![[1.0, 2.0], [2.0, 3.0], [3.0, 4.0], [4.0, 5.0]];
let y = array![0, 1, -1, -1]; // -1 indicates unlabeled

let ln = LadderNetworks::new()
    .layer_sizes(vec![2, 4, 2])
    .noise_std(0.3)
    .lambda_unsupervised(1.0)
    .lambda_supervised(1.0);
let fitted = ln.fit(&X.view(), &y.view()).unwrap();
let predictions = fitted.predict(&X.view()).unwrap();

Implementations§

Source§

impl LadderNetworks<Untrained>

Source

pub fn new() -> Self

Create a new LadderNetworks instance

Source

pub fn layer_sizes(self, sizes: Vec<usize>) -> Self

Set the layer sizes (input size will be set automatically)

Source

pub fn noise_std(self, std: f64) -> Self

Set the noise standard deviation

Source

pub fn lambda_unsupervised(self, lambda: f64) -> Self

Set the unsupervised loss weight

Source

pub fn lambda_supervised(self, lambda: f64) -> Self

Set the supervised loss weight

Source

pub fn denoising_cost_weights(self, weights: Vec<f64>) -> Self

Set the denoising cost weights for each layer

Source

pub fn learning_rate(self, lr: f64) -> Self

Set the learning rate

Source

pub fn max_iter(self, max_iter: usize) -> Self

Set the maximum number of iterations

Source

pub fn batch_size(self, batch_size: usize) -> Self

Set the batch size

Source

pub fn beta1(self, beta1: f64) -> Self

Set Adam optimizer beta1 parameter

Source

pub fn beta2(self, beta2: f64) -> Self

Set Adam optimizer beta2 parameter

Source

pub fn random_state(self, seed: u64) -> Self

Set random state for reproducibility

Trait Implementations§

Source§

impl<S: Clone> Clone for LadderNetworks<S>

Source§

fn clone(&self) -> LadderNetworks<S>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<S: Debug> Debug for LadderNetworks<S>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for LadderNetworks<Untrained>

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl Estimator for LadderNetworks<Untrained>

Source§

type Config = ()

Configuration type for the estimator
Source§

type Error = SklearsError

Error type for the estimator
Source§

type Float = f64

The numeric type used by this estimator
Source§

fn config(&self) -> &Self::Config

Get estimator configuration
Source§

fn validate_config(&self) -> Result<(), SklearsError>

Validate estimator configuration with detailed error context
Source§

fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>

Check if estimator is compatible with given data dimensions
Source§

fn metadata(&self) -> EstimatorMetadata

Get estimator metadata
Source§

impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&i32>, Dim<[usize; 1]>>> for LadderNetworks<Untrained>

Source§

type Fitted = LadderNetworks<LadderNetworksTrained>

The fitted model type
Source§

fn fit( self, X: &ArrayView2<'_, Float>, y: &ArrayView1<'_, i32>, ) -> SklResult<Self::Fitted>

Fit the model to the provided data with validation
Source§

fn fit_with_validation( self, x: &X, y: &Y, _x_val: Option<&X>, _y_val: Option<&Y>, ) -> Result<(Self::Fitted, FitMetrics), SklearsError>
where Self: Sized,

Fit with custom validation and early stopping
Source§

impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for LadderNetworks<LadderNetworksTrained>

Source§

fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<i32>>

Make predictions on the provided data
Source§

fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>

Make predictions with confidence intervals
Source§

impl PredictProba<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for LadderNetworks<LadderNetworksTrained>

Source§

fn predict_proba(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array2<f64>>

Predict class probabilities

Auto Trait Implementations§

§

impl<S> Freeze for LadderNetworks<S>
where S: Freeze,

§

impl<S> RefUnwindSafe for LadderNetworks<S>
where S: RefUnwindSafe,

§

impl<S> Send for LadderNetworks<S>
where S: Send,

§

impl<S> Sync for LadderNetworks<S>
where S: Sync,

§

impl<S> Unpin for LadderNetworks<S>
where S: Unpin,

§

impl<S> UnwindSafe for LadderNetworks<S>
where S: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> StableApi for T
where T: Estimator,

Source§

const STABLE_SINCE: &'static str = "0.1.0"

API version this type was stabilized in
Source§

const HAS_EXPERIMENTAL_FEATURES: bool = false

Whether this API has any experimental features
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V