DemocraticCoLearning

Struct DemocraticCoLearning 

Source
pub struct DemocraticCoLearning<S = Untrained> { /* private fields */ }
Expand description

Democratic Co-Learning classifier for semi-supervised learning

Democratic co-learning extends traditional co-training by using multiple classifiers trained on different views of the data. Instead of pairwise labeling, all classifiers vote democratically on which unlabeled samples should be added to the training set.

§Parameters

  • views - Feature indices for each view
  • k_add - Number of samples to add per iteration
  • max_iter - Maximum number of iterations
  • confidence_threshold - Minimum confidence threshold for pseudo-labeling
  • min_agreement - Minimum number of classifiers that must agree
  • verbose - Whether to print progress information

§Examples

use sklears_semi_supervised::DemocraticCoLearning;
use sklears_core::traits::{Predict, Fit};


let X = array![[1.0, 2.0, 3.0, 4.0, 5.0, 6.0],
               [2.0, 3.0, 4.0, 5.0, 6.0, 7.0],
               [3.0, 4.0, 5.0, 6.0, 7.0, 8.0],
               [4.0, 5.0, 6.0, 7.0, 8.0, 9.0]];
let y = array![0, 1, -1, -1]; // -1 indicates unlabeled

let dcl = DemocraticCoLearning::new()
    .views(vec![vec![0, 1], vec![2, 3], vec![4, 5]])
    .k_add(1)
    .min_agreement(2)
    .max_iter(10);
let fitted = dcl.fit(&X.view(), &y.view()).unwrap();
let predictions = fitted.predict(&X.view()).unwrap();

Implementations§

Source§

impl DemocraticCoLearning<Untrained>

Source

pub fn new() -> Self

Create a new DemocraticCoLearning instance

Source

pub fn views(self, views: Vec<Vec<usize>>) -> Self

Set the feature views

Source

pub fn k_add(self, k_add: usize) -> Self

Set the number of samples to add per iteration

Source

pub fn max_iter(self, max_iter: usize) -> Self

Set the maximum number of iterations

Source

pub fn confidence_threshold(self, threshold: f64) -> Self

Set the confidence threshold

Source

pub fn min_agreement(self, min_agreement: usize) -> Self

Set the minimum number of classifiers that must agree

Source

pub fn verbose(self, verbose: bool) -> Self

Set verbosity

Source

pub fn selection_strategy(self, strategy: String) -> Self

Set selection strategy for choosing samples to add

Trait Implementations§

Source§

impl<S: Clone> Clone for DemocraticCoLearning<S>

Source§

fn clone(&self) -> DemocraticCoLearning<S>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<S: Debug> Debug for DemocraticCoLearning<S>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for DemocraticCoLearning<Untrained>

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl Estimator for DemocraticCoLearning<Untrained>

Source§

type Config = ()

Configuration type for the estimator
Source§

type Error = SklearsError

Error type for the estimator
Source§

type Float = f64

The numeric type used by this estimator
Source§

fn config(&self) -> &Self::Config

Get estimator configuration
Source§

fn validate_config(&self) -> Result<(), SklearsError>

Validate estimator configuration with detailed error context
Source§

fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>

Check if estimator is compatible with given data dimensions
Source§

fn metadata(&self) -> EstimatorMetadata

Get estimator metadata
Source§

impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&i32>, Dim<[usize; 1]>>> for DemocraticCoLearning<Untrained>

Source§

type Fitted = DemocraticCoLearning<DemocraticCoLearningTrained>

The fitted model type
Source§

fn fit( self, X: &ArrayView2<'_, Float>, y: &ArrayView1<'_, i32>, ) -> SklResult<Self::Fitted>

Fit the model to the provided data with validation
Source§

fn fit_with_validation( self, x: &X, y: &Y, _x_val: Option<&X>, _y_val: Option<&Y>, ) -> Result<(Self::Fitted, FitMetrics), SklearsError>
where Self: Sized,

Fit with custom validation and early stopping
Source§

impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for DemocraticCoLearning<DemocraticCoLearningTrained>

Source§

fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<i32>>

Make predictions on the provided data
Source§

fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>

Make predictions with confidence intervals

Auto Trait Implementations§

§

impl<S> Freeze for DemocraticCoLearning<S>
where S: Freeze,

§

impl<S> RefUnwindSafe for DemocraticCoLearning<S>
where S: RefUnwindSafe,

§

impl<S> Send for DemocraticCoLearning<S>
where S: Send,

§

impl<S> Sync for DemocraticCoLearning<S>
where S: Sync,

§

impl<S> Unpin for DemocraticCoLearning<S>
where S: Unpin,

§

impl<S> UnwindSafe for DemocraticCoLearning<S>
where S: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> StableApi for T
where T: Estimator,

Source§

const STABLE_SINCE: &'static str = "0.1.0"

API version this type was stabilized in
Source§

const HAS_EXPERIMENTAL_FEATURES: bool = false

Whether this API has any experimental features
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V