pub struct CoTraining<S = Untrained> { /* private fields */ }Expand description
Co-Training classifier for semi-supervised learning with multiple views
Co-training uses two different feature sets (views) to train two classifiers. Each classifier labels unlabeled examples for the other classifier to use.
§Parameters
view1_features- Indices of features for view 1view2_features- Indices of features for view 2p- Number of positive examples to add per iterationn- Number of negative examples to add per iterationmax_iter- Maximum number of iterationsverbose- Whether to print progress information
§Examples
ⓘ
use sklears_semi_supervised::CoTraining;
use sklears_core::traits::{Predict, Fit};
let X = array![[1.0, 2.0, 3.0, 4.0], [2.0, 3.0, 4.0, 5.0],
[3.0, 4.0, 5.0, 6.0], [4.0, 5.0, 6.0, 7.0]];
let y = array![0, 1, -1, -1]; // -1 indicates unlabeled
let ct = CoTraining::new()
.view1_features(vec![0, 1])
.view2_features(vec![2, 3])
.p(1)
.n(1)
.max_iter(10);
let fitted = ct.fit(&X.view(), &y.view()).unwrap();
let predictions = fitted.predict(&X.view()).unwrap();Implementations§
Source§impl CoTraining<Untrained>
impl CoTraining<Untrained>
Sourcepub fn view1_features(self, features: Vec<usize>) -> Self
pub fn view1_features(self, features: Vec<usize>) -> Self
Set the features for view 1
Sourcepub fn view2_features(self, features: Vec<usize>) -> Self
pub fn view2_features(self, features: Vec<usize>) -> Self
Set the features for view 2
Sourcepub fn confidence_threshold(self, threshold: f64) -> Self
pub fn confidence_threshold(self, threshold: f64) -> Self
Set confidence threshold
Trait Implementations§
Source§impl<S: Clone> Clone for CoTraining<S>
impl<S: Clone> Clone for CoTraining<S>
Source§fn clone(&self) -> CoTraining<S>
fn clone(&self) -> CoTraining<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for CoTraining<S>
impl<S: Debug> Debug for CoTraining<S>
Source§impl Default for CoTraining<Untrained>
impl Default for CoTraining<Untrained>
Source§impl Estimator for CoTraining<Untrained>
impl Estimator for CoTraining<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&i32>, Dim<[usize; 1]>>> for CoTraining<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&i32>, Dim<[usize; 1]>>> for CoTraining<Untrained>
Source§type Fitted = CoTraining<CoTrainingTrained>
type Fitted = CoTraining<CoTrainingTrained>
The fitted model type
Source§fn fit(
self,
X: &ArrayView2<'_, Float>,
y: &ArrayView1<'_, i32>,
) -> SklResult<Self::Fitted>
fn fit( self, X: &ArrayView2<'_, Float>, y: &ArrayView1<'_, i32>, ) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for CoTraining<CoTrainingTrained>
impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for CoTraining<CoTrainingTrained>
Source§fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<i32>>
fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<i32>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<S> Freeze for CoTraining<S>where
S: Freeze,
impl<S> RefUnwindSafe for CoTraining<S>where
S: RefUnwindSafe,
impl<S> Send for CoTraining<S>where
S: Send,
impl<S> Sync for CoTraining<S>where
S: Sync,
impl<S> Unpin for CoTraining<S>where
S: Unpin,
impl<S> UnwindSafe for CoTraining<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features