Module scaling

Module scaling 

Source
Expand description

Data scaling utilities

This module provides comprehensive data scaling and normalization implementations including standard scaling (z-score normalization), min-max scaling, robust scaling with quantiles, max absolute value scaling, L1/L2 normalization, unit vector scaling, feature-wise scaling, outlier-aware scaling, kernel centering, polynomial feature generation, power transformations, quantile transformations, SIMD-optimized implementations, streaming scalers, adaptive scalers, categorical feature encoding, mixed-type scaling, and high-performance preprocessing pipelines. All algorithms have been refactored into focused modules for better maintainability and comply with SciRS2 Policy.

Structs§

FeatureWiseScaler
Placeholder FeatureWiseScaler for API compatibility
FeatureWiseScalerConfig
FeatureWiseScaler configuration
MaxAbsScaler
Placeholder MaxAbsScaler for API compatibility
MinMaxScaler
Placeholder MinMaxScaler for API compatibility
Normalizer
Placeholder Normalizer for API compatibility
OutlierAwareScaler
Placeholder OutlierAwareScaler for API compatibility
OutlierAwareScalerConfig
OutlierAwareScaler configuration
OutlierScalingStats
Outlier scaling statistics
RobustScaler
Placeholder RobustScaler for API compatibility
StandardScaler
Placeholder StandardScaler for API compatibility
UnitVectorScaler
Placeholder UnitVectorScaler for API compatibility
UnitVectorScalerConfig
UnitVectorScaler configuration

Enums§

NormType
Norm types for vector normalization
OutlierAwareScalingStrategy
Outlier-aware scaling strategies
RobustStatistic
Robust statistics for scaling
ScalingMethod
Scaling methods