sklears-preprocessing
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
Overview
sklears-preprocessing contains scalers, encoders, transformers, and feature engineering utilities that mirror scikit-learn’s preprocessing module while leveraging Rust performance.
Key Features
- Scalers: StandardScaler, MinMaxScaler, RobustScaler, MaxAbsScaler, QuantileTransformer, PowerTransformer.
- Encoders: OneHotEncoder, OrdinalEncoder, TargetEncoder, PolynomialFeatures, Binarizer.
- Feature Utilities: Normalizer, FunctionTransformer, MissingIndicator, discretizers, and outlier filters.
- Hardware Acceleration: SIMD, multi-threading, and optional GPU support for large tabular datasets.
Quick Start
use ;
let scaler = default.fit?;
let x_scaled = scaler.transform?;
let poly = builder
.degree
.include_bias
.interaction_only
.build;
let x_poly = poly.fit_transform?;
Status
- Extensively covered by the 11,292 passing workspace tests in
0.1.0-beta.1. - Provides >99% parity with scikit-learn preprocessing APIs, including sparse support.
- Future enhancements (GPU categorical encoders, streaming scalers) tracked in
TODO.md.