pub struct RandomForestMultiOutput<S = Untrained> { /* private fields */ }Expand description
Random Forest Multi-Output Extension
A random forest that can handle multiple output variables simultaneously. This implementation creates multiple multi-target regression trees and averages their predictions for robust multi-output regression.
§Mathematical Foundation
The random forest combines multiple multi-target regression trees:
- Each tree is trained on a bootstrap sample of the data
- Each tree considers only a random subset of features at each split
- Final prediction is the average of all tree predictions
- Feature importance is averaged across all trees
§Examples
use sklears_multioutput::RandomForestMultiOutput;
use sklears_core::traits::{Predict, Fit};
// Use SciRS2-Core for arrays and random number generation (SciRS2 Policy)
use scirs2_core::ndarray::array;
let X = array![[1.0, 2.0], [2.0, 3.0], [3.0, 1.0], [4.0, 4.0]];
let y = array![[1.5, 2.5], [2.5, 3.5], [3.5, 1.5], [4.5, 4.5]];
let forest = RandomForestMultiOutput::new()
.n_estimators(10)
.max_depth(Some(3));
let trained_forest = forest.fit(&X.view(), &y).unwrap();
let predictions = trained_forest.predict(&X.view()).unwrap();Implementations§
Source§impl RandomForestMultiOutput<Untrained>
impl RandomForestMultiOutput<Untrained>
Sourcepub fn n_estimators(self, n_estimators: usize) -> Self
pub fn n_estimators(self, n_estimators: usize) -> Self
Set the number of trees in the forest
Sourcepub fn min_samples_split(self, min_samples_split: usize) -> Self
pub fn min_samples_split(self, min_samples_split: usize) -> Self
Set the minimum number of samples required to split an internal node
Sourcepub fn min_samples_leaf(self, min_samples_leaf: usize) -> Self
pub fn min_samples_leaf(self, min_samples_leaf: usize) -> Self
Set the minimum number of samples required to be at a leaf node
Sourcepub fn max_features(self, max_features: Option<usize>) -> Self
pub fn max_features(self, max_features: Option<usize>) -> Self
Set the number of features to consider when looking for the best split
Sourcepub fn bootstrap(self, bootstrap: bool) -> Self
pub fn bootstrap(self, bootstrap: bool) -> Self
Set whether to use bootstrap samples when building trees
Sourcepub fn random_state(self, random_state: Option<u64>) -> Self
pub fn random_state(self, random_state: Option<u64>) -> Self
Set the random state for reproducible results
Sourcepub fn get_n_estimators(&self) -> usize
pub fn get_n_estimators(&self) -> usize
Get the number of trees in the forest
Sourcepub fn get_max_depth(&self) -> Option<usize>
pub fn get_max_depth(&self) -> Option<usize>
Get the maximum depth of the trees
Sourcepub fn get_min_samples_split(&self) -> usize
pub fn get_min_samples_split(&self) -> usize
Get the minimum number of samples required to split an internal node
Sourcepub fn get_min_samples_leaf(&self) -> usize
pub fn get_min_samples_leaf(&self) -> usize
Get the minimum number of samples required to be at a leaf node
Sourcepub fn get_max_features(&self) -> Option<usize>
pub fn get_max_features(&self) -> Option<usize>
Get the maximum number of features to consider when looking for the best split
Sourcepub fn get_bootstrap(&self) -> bool
pub fn get_bootstrap(&self) -> bool
Get whether bootstrap samples are used when building trees
Sourcepub fn get_random_state(&self) -> Option<u64>
pub fn get_random_state(&self) -> Option<u64>
Get the random state
Source§impl RandomForestMultiOutput<RandomForestMultiOutputTrained>
impl RandomForestMultiOutput<RandomForestMultiOutputTrained>
Sourcepub fn feature_importances(&self) -> &Array1<Float>
pub fn feature_importances(&self) -> &Array1<Float>
Get the feature importances averaged across all trees
Sourcepub fn n_estimators(&self) -> usize
pub fn n_estimators(&self) -> usize
Get the number of estimators (trees)
Sourcepub fn n_features(&self) -> usize
pub fn n_features(&self) -> usize
Get the number of features
Trait Implementations§
Source§impl<S: Clone> Clone for RandomForestMultiOutput<S>
impl<S: Clone> Clone for RandomForestMultiOutput<S>
Source§fn clone(&self) -> RandomForestMultiOutput<S>
fn clone(&self) -> RandomForestMultiOutput<S>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl<S: Debug> Debug for RandomForestMultiOutput<S>
impl<S: Debug> Debug for RandomForestMultiOutput<S>
Source§impl Default for RandomForestMultiOutput<Untrained>
impl Default for RandomForestMultiOutput<Untrained>
Source§impl Estimator for RandomForestMultiOutput<Untrained>
impl Estimator for RandomForestMultiOutput<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for RandomForestMultiOutput<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for RandomForestMultiOutput<Untrained>
Source§type Fitted = RandomForestMultiOutput<RandomForestMultiOutputTrained>
type Fitted = RandomForestMultiOutput<RandomForestMultiOutputTrained>
Source§fn fit(
self,
X: &ArrayView2<'_, Float>,
y: &Array2<Float>,
) -> SklResult<Self::Fitted>
fn fit( self, X: &ArrayView2<'_, Float>, y: &Array2<Float>, ) -> SklResult<Self::Fitted>
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Auto Trait Implementations§
impl<S> Freeze for RandomForestMultiOutput<S>where
S: Freeze,
impl<S> RefUnwindSafe for RandomForestMultiOutput<S>where
S: RefUnwindSafe,
impl<S> Send for RandomForestMultiOutput<S>where
S: Send,
impl<S> Sync for RandomForestMultiOutput<S>where
S: Sync,
impl<S> Unpin for RandomForestMultiOutput<S>where
S: Unpin,
impl<S> UnwindSafe for RandomForestMultiOutput<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more