pub struct MultiTargetRegressionTree<S = Untrained> { /* private fields */ }Expand description
Multi-Target Regression Tree
A decision tree regressor that can handle multiple target variables simultaneously. Uses joint variance reduction for optimal splits across all targets.
§Examples
use sklears_multioutput::MultiTargetRegressionTree;
use sklears_core::traits::{Predict, Fit};
// Use SciRS2-Core for arrays and random number generation (SciRS2 Policy)
use scirs2_core::ndarray::array;
let X = array![[1.0, 2.0], [2.0, 3.0], [3.0, 1.0], [4.0, 4.0]];
let y = array![[1.5, 2.5], [2.5, 3.5], [3.5, 1.5], [4.5, 4.5]];
let tree = MultiTargetRegressionTree::new()
.max_depth(Some(3))
.min_samples_split(2);
let trained_tree = tree.fit(&X.view(), &y).unwrap();
let predictions = trained_tree.predict(&X.view()).unwrap();Implementations§
Source§impl MultiTargetRegressionTree<Untrained>
impl MultiTargetRegressionTree<Untrained>
Sourcepub fn min_samples_split(self, min_samples_split: usize) -> Self
pub fn min_samples_split(self, min_samples_split: usize) -> Self
Set the minimum number of samples required to split an internal node
Sourcepub fn min_samples_leaf(self, min_samples_leaf: usize) -> Self
pub fn min_samples_leaf(self, min_samples_leaf: usize) -> Self
Set the minimum number of samples required to be at a leaf node
Sourcepub fn random_state(self, random_state: Option<u64>) -> Self
pub fn random_state(self, random_state: Option<u64>) -> Self
Set the random state for reproducible results
Sourcepub fn get_max_depth(&self) -> Option<usize>
pub fn get_max_depth(&self) -> Option<usize>
Get the maximum depth of the tree
Sourcepub fn get_min_samples_split(&self) -> usize
pub fn get_min_samples_split(&self) -> usize
Get the minimum number of samples required to split an internal node
Sourcepub fn get_min_samples_leaf(&self) -> usize
pub fn get_min_samples_leaf(&self) -> usize
Get the minimum number of samples required to be at a leaf node
Sourcepub fn get_random_state(&self) -> Option<u64>
pub fn get_random_state(&self) -> Option<u64>
Get the random state
Source§impl MultiTargetRegressionTree<MultiTargetRegressionTreeTrained>
impl MultiTargetRegressionTree<MultiTargetRegressionTreeTrained>
Sourcepub fn feature_importances(&self) -> &Array1<Float>
pub fn feature_importances(&self) -> &Array1<Float>
Get the feature importances
Sourcepub fn n_features(&self) -> usize
pub fn n_features(&self) -> usize
Get the number of features
Trait Implementations§
Source§impl<S: Clone> Clone for MultiTargetRegressionTree<S>
impl<S: Clone> Clone for MultiTargetRegressionTree<S>
Source§fn clone(&self) -> MultiTargetRegressionTree<S>
fn clone(&self) -> MultiTargetRegressionTree<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for MultiTargetRegressionTree<S>
impl<S: Debug> Debug for MultiTargetRegressionTree<S>
Source§impl Default for MultiTargetRegressionTree<Untrained>
impl Default for MultiTargetRegressionTree<Untrained>
Source§impl Estimator for MultiTargetRegressionTree<Untrained>
impl Estimator for MultiTargetRegressionTree<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for MultiTargetRegressionTree<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for MultiTargetRegressionTree<Untrained>
Source§type Fitted = MultiTargetRegressionTree<MultiTargetRegressionTreeTrained>
type Fitted = MultiTargetRegressionTree<MultiTargetRegressionTreeTrained>
The fitted model type
Source§fn fit(
self,
X: &ArrayView2<'_, Float>,
y: &Array2<Float>,
) -> SklResult<Self::Fitted>
fn fit( self, X: &ArrayView2<'_, Float>, y: &Array2<Float>, ) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Auto Trait Implementations§
impl<S> Freeze for MultiTargetRegressionTree<S>where
S: Freeze,
impl<S> RefUnwindSafe for MultiTargetRegressionTree<S>where
S: RefUnwindSafe,
impl<S> Send for MultiTargetRegressionTree<S>where
S: Send,
impl<S> Sync for MultiTargetRegressionTree<S>where
S: Sync,
impl<S> Unpin for MultiTargetRegressionTree<S>where
S: Unpin,
impl<S> UnwindSafe for MultiTargetRegressionTree<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features