MaximumEntropyMarkovModel

Struct MaximumEntropyMarkovModel 

Source
pub struct MaximumEntropyMarkovModel<S = Untrained> { /* private fields */ }
Expand description

Maximum Entropy Markov Model (MEMM) for Sequence Labeling

MEMM is a discriminative model for sequence labeling that combines the advantages of maximum entropy models with Markov assumptions. Unlike CRF, MEMM models the conditional probability of each label given the previous label and observed features.

The model uses logistic regression at each position to predict the next label based on features extracted from the current observation and previous label.

§Examples

use sklears_multioutput::MaximumEntropyMarkovModel;
use sklears_core::traits::{Predict, Fit};
// Use SciRS2-Core for arrays and random number generation (SciRS2 Policy)
use scirs2_core::ndarray::array;

// Sequence data: each row is a sequence element with features
let X = vec![
    array![[1.0, 2.0], [2.0, 3.0], [3.0, 1.0]], // sequence 1
    array![[4.0, 1.0], [1.0, 4.0]]                // sequence 2
];

// Label sequences
let y = vec![
    vec![0, 1, 0], // labels for sequence 1
    vec![1, 0]     // labels for sequence 2
];

let memm = MaximumEntropyMarkovModel::new()
    .max_iter(50)
    .learning_rate(0.01);
let trained_memm = memm.fit(&X, &y).unwrap();
let predictions = trained_memm.predict(&X).unwrap();

Implementations§

Source§

impl MaximumEntropyMarkovModel<Untrained>

Source

pub fn new() -> Self

Create a new MEMM instance

Source

pub fn max_iter(self, max_iter: usize) -> Self

Set maximum number of iterations

Source

pub fn learning_rate(self, learning_rate: Float) -> Self

Set learning rate

Source

pub fn l2_regularization(self, l2_reg: Float) -> Self

Set L2 regularization strength

Source

pub fn tolerance(self, tolerance: Float) -> Self

Set convergence tolerance

Source

pub fn random_state(self, random_state: u64) -> Self

Set random state for reproducible results

Source§

impl MaximumEntropyMarkovModel<MaximumEntropyMarkovModelTrained>

Source

pub fn weights(&self) -> &Array1<Float>

Get the learned weights

Source

pub fn n_labels(&self) -> usize

Get the number of labels

Trait Implementations§

Source§

impl<S: Clone> Clone for MaximumEntropyMarkovModel<S>

Source§

fn clone(&self) -> MaximumEntropyMarkovModel<S>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<S: Debug> Debug for MaximumEntropyMarkovModel<S>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for MaximumEntropyMarkovModel<Untrained>

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl Estimator for MaximumEntropyMarkovModel<Untrained>

Source§

type Config = ()

Configuration type for the estimator
Source§

type Error = SklearsError

Error type for the estimator
Source§

type Float = f64

The numeric type used by this estimator
Source§

fn config(&self) -> &Self::Config

Get estimator configuration
Source§

fn validate_config(&self) -> Result<(), SklearsError>

Validate estimator configuration with detailed error context
Source§

fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>

Check if estimator is compatible with given data dimensions
Source§

fn metadata(&self) -> EstimatorMetadata

Get estimator metadata
Source§

impl Fit<Vec<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>>, Vec<Vec<i32>>> for MaximumEntropyMarkovModel<Untrained>

Source§

type Fitted = MaximumEntropyMarkovModel<MaximumEntropyMarkovModelTrained>

The fitted model type
Source§

fn fit( self, X: &Vec<Array2<Float>>, y: &Vec<Vec<i32>>, ) -> SklResult<Self::Fitted>

Fit the model to the provided data with validation
Source§

fn fit_with_validation( self, x: &X, y: &Y, _x_val: Option<&X>, _y_val: Option<&Y>, ) -> Result<(Self::Fitted, FitMetrics), SklearsError>
where Self: Sized,

Fit with custom validation and early stopping
Source§

impl Predict<Vec<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>>, Vec<Vec<i32>>> for MaximumEntropyMarkovModel<MaximumEntropyMarkovModelTrained>

Source§

fn predict(&self, X: &Vec<Array2<Float>>) -> SklResult<Vec<Vec<i32>>>

Make predictions on the provided data
Source§

fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>

Make predictions with confidence intervals

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> StableApi for T
where T: Estimator,

Source§

const STABLE_SINCE: &'static str = "0.1.0"

API version this type was stabilized in
Source§

const HAS_EXPERIMENTAL_FEATURES: bool = false

Whether this API has any experimental features
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V