pub struct MetaLearningMultiTask<S = Untrained> { /* private fields */ }Expand description
Meta-Learning for Multi-Task Learning
This method learns meta-parameters that can quickly adapt to new tasks. It uses a model-agnostic meta-learning (MAML) approach adapted for multi-task scenarios.
§Examples
use sklears_multioutput::regularization::MetaLearningMultiTask;
use sklears_core::traits::{Predict, Fit};
// Use SciRS2-Core for arrays and random number generation (SciRS2 Policy)
use scirs2_core::ndarray::array;
use std::collections::HashMap;
let X = array![[1.0, 2.0], [2.0, 3.0], [3.0, 1.0], [4.0, 4.0]];
let mut y_tasks = HashMap::new();
y_tasks.insert("task1".to_string(), array![[1.0], [2.0], [1.5], [2.5]]);
y_tasks.insert("task2".to_string(), array![[0.5], [1.0], [0.8], [1.2]]);
let meta_learning = MetaLearningMultiTask::new()
.meta_learning_rate(0.01)
.inner_learning_rate(0.1)
.n_inner_steps(5)
.max_iter(1000);Implementations§
Source§impl MetaLearningMultiTask<Untrained>
impl MetaLearningMultiTask<Untrained>
Sourcepub fn meta_learning_rate(self, lr: Float) -> Self
pub fn meta_learning_rate(self, lr: Float) -> Self
Set meta-learning rate
Sourcepub fn inner_learning_rate(self, lr: Float) -> Self
pub fn inner_learning_rate(self, lr: Float) -> Self
Set inner learning rate
Sourcepub fn n_inner_steps(self, steps: usize) -> Self
pub fn n_inner_steps(self, steps: usize) -> Self
Set number of inner gradient steps
Sourcepub fn random_state(self, seed: u64) -> Self
pub fn random_state(self, seed: u64) -> Self
Set random state
Sourcepub fn task_outputs(self, outputs: &[(&str, usize)]) -> Self
pub fn task_outputs(self, outputs: &[(&str, usize)]) -> Self
Set task outputs
Source§impl MetaLearningMultiTask<MetaLearningMultiTaskTrained>
impl MetaLearningMultiTask<MetaLearningMultiTaskTrained>
Trait Implementations§
Source§impl<S: Clone> Clone for MetaLearningMultiTask<S>
impl<S: Clone> Clone for MetaLearningMultiTask<S>
Source§fn clone(&self) -> MetaLearningMultiTask<S>
fn clone(&self) -> MetaLearningMultiTask<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for MetaLearningMultiTask<S>
impl<S: Debug> Debug for MetaLearningMultiTask<S>
Source§impl Default for MetaLearningMultiTask<Untrained>
impl Default for MetaLearningMultiTask<Untrained>
Source§impl Estimator for MetaLearningMultiTask<Untrained>
impl Estimator for MetaLearningMultiTask<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, HashMap<String, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>>> for MetaLearningMultiTask<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, HashMap<String, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>>> for MetaLearningMultiTask<Untrained>
Source§type Fitted = MetaLearningMultiTask<MetaLearningMultiTaskTrained>
type Fitted = MetaLearningMultiTask<MetaLearningMultiTaskTrained>
The fitted model type
Source§fn fit(
self,
X: &ArrayView2<'_, Float>,
y: &HashMap<String, Array2<Float>>,
) -> SklResult<Self::Fitted>
fn fit( self, X: &ArrayView2<'_, Float>, y: &HashMap<String, Array2<Float>>, ) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, HashMap<String, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>>> for MetaLearningMultiTask<MetaLearningMultiTaskTrained>
impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, HashMap<String, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>>> for MetaLearningMultiTask<MetaLearningMultiTaskTrained>
Source§fn predict(
&self,
X: &ArrayView2<'_, Float>,
) -> SklResult<HashMap<String, Array2<Float>>>
fn predict( &self, X: &ArrayView2<'_, Float>, ) -> SklResult<HashMap<String, Array2<Float>>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<S> Freeze for MetaLearningMultiTask<S>where
S: Freeze,
impl<S> RefUnwindSafe for MetaLearningMultiTask<S>where
S: RefUnwindSafe,
impl<S> Send for MetaLearningMultiTask<S>where
S: Send,
impl<S> Sync for MetaLearningMultiTask<S>where
S: Sync,
impl<S> Unpin for MetaLearningMultiTask<S>where
S: Unpin,
impl<S> UnwindSafe for MetaLearningMultiTask<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features