pub struct WarmStartRegressor<S = Untrained> { /* private fields */ }Expand description
Warm Start Multi-Output Regressor
Multi-output regressor with warm start capabilities for iterative optimization. Supports resuming training from previous state and early stopping.
§Examples
use sklears_multioutput::performance::{WarmStartRegressor, WarmStartRegressorConfig};
// Use SciRS2-Core for arrays and random number generation (SciRS2 Policy)
use scirs2_core::ndarray::array;
use sklears_core::traits::{Fit, Predict};
let X = array![[1.0, 2.0], [2.0, 3.0], [3.0, 4.0]];
let y = array![[1.0, 2.0], [2.0, 3.0], [3.0, 4.0]];
let mut config = WarmStartRegressorConfig::default();
config.max_iter = 100;
let model = WarmStartRegressor::new().config(config);
let trained = model.fit(&X.view(), &y.view()).unwrap();
// Continue training with warm start
let continued = trained.continue_training(&X.view(), &y.view(), 50).unwrap();
let predictions = continued.predict(&X.view()).unwrap();
assert_eq!(predictions.dim(), (3, 2));Implementations§
Source§impl WarmStartRegressor<Untrained>
impl WarmStartRegressor<Untrained>
Sourcepub fn config(self, config: WarmStartRegressorConfig) -> Self
pub fn config(self, config: WarmStartRegressorConfig) -> Self
Set the configuration
Sourcepub fn learning_rate(self, lr: Float) -> Self
pub fn learning_rate(self, lr: Float) -> Self
Set learning rate
Sourcepub fn early_stopping(self, config: EarlyStoppingConfig) -> Self
pub fn early_stopping(self, config: EarlyStoppingConfig) -> Self
Enable early stopping
Source§impl WarmStartRegressor<WarmStartRegressorTrained>
impl WarmStartRegressor<WarmStartRegressorTrained>
Sourcepub fn continue_training(
self,
X: &ArrayView2<'_, Float>,
y: &ArrayView2<'_, Float>,
additional_iterations: usize,
) -> SklResult<Self>
pub fn continue_training( self, X: &ArrayView2<'_, Float>, y: &ArrayView2<'_, Float>, additional_iterations: usize, ) -> SklResult<Self>
Continue training from current state
Sourcepub fn loss_history(&self) -> &[Float] ⓘ
pub fn loss_history(&self) -> &[Float] ⓘ
Get training history
Trait Implementations§
Source§impl<S: Clone> Clone for WarmStartRegressor<S>
impl<S: Clone> Clone for WarmStartRegressor<S>
Source§fn clone(&self) -> WarmStartRegressor<S>
fn clone(&self) -> WarmStartRegressor<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for WarmStartRegressor<S>
impl<S: Debug> Debug for WarmStartRegressor<S>
Source§impl Default for WarmStartRegressor<Untrained>
impl Default for WarmStartRegressor<Untrained>
Source§impl Estimator for WarmStartRegressor<Untrained>
impl Estimator for WarmStartRegressor<Untrained>
Source§type Config = WarmStartRegressorConfig
type Config = WarmStartRegressorConfig
Configuration type for the estimator
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Estimator for WarmStartRegressor<WarmStartRegressorTrained>
impl Estimator for WarmStartRegressor<WarmStartRegressorTrained>
Source§type Config = WarmStartRegressorConfig
type Config = WarmStartRegressorConfig
Configuration type for the estimator
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>> for WarmStartRegressor<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>> for WarmStartRegressor<Untrained>
Source§type Fitted = WarmStartRegressor<WarmStartRegressorTrained>
type Fitted = WarmStartRegressor<WarmStartRegressorTrained>
The fitted model type
Source§fn fit(
self,
X: &ArrayView2<'_, Float>,
y: &ArrayView2<'_, Float>,
) -> SklResult<Self::Fitted>
fn fit( self, X: &ArrayView2<'_, Float>, y: &ArrayView2<'_, Float>, ) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for WarmStartRegressor<WarmStartRegressorTrained>
impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for WarmStartRegressor<WarmStartRegressorTrained>
Source§fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array2<Float>>
fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array2<Float>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<S> Freeze for WarmStartRegressor<S>where
S: Freeze,
impl<S> RefUnwindSafe for WarmStartRegressor<S>where
S: RefUnwindSafe,
impl<S> Send for WarmStartRegressor<S>where
S: Send,
impl<S> Sync for WarmStartRegressor<S>where
S: Sync,
impl<S> Unpin for WarmStartRegressor<S>where
S: Unpin,
impl<S> UnwindSafe for WarmStartRegressor<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features