RobustGaussianMixture

Struct RobustGaussianMixture 

Source
pub struct RobustGaussianMixture<S = Untrained> { /* private fields */ }
Expand description

Robust Gaussian Mixture Model

A robust version of Gaussian mixture model that is resistant to outliers. This implementation uses trimmed likelihood estimation and outlier detection to provide robust parameter estimates even in the presence of outliers.

§Parameters

  • n_components - Number of mixture components
  • covariance_type - Type of covariance parameters
  • tol - Convergence threshold
  • reg_covar - Regularization added to the diagonal of covariance
  • max_iter - Maximum number of EM iterations
  • n_init - Number of initializations to perform
  • outlier_fraction - Expected fraction of outliers in the data (0.0 to 0.5)
  • outlier_threshold - Threshold for outlier detection (in standard deviations)
  • robust_covariance - Whether to use robust covariance estimation
  • random_state - Random state for reproducibility

§Examples

use sklears_mixture::{RobustGaussianMixture, CovarianceType};
use sklears_core::traits::{Predict, Fit};
use scirs2_core::ndarray::array;

let X = array![[0.0, 0.0], [1.0, 1.0], [2.0, 2.0], [100.0, 100.0], [11.0, 11.0], [12.0, 12.0]];

let rgmm = RobustGaussianMixture::new()
    .n_components(2)
    .outlier_fraction(0.15)
    .covariance_type(CovarianceType::Diagonal)
    .max_iter(100);
let fitted = rgmm.fit(&X.view(), &()).unwrap();
let labels = fitted.predict(&X.view()).unwrap();

Implementations§

Source§

impl RobustGaussianMixture<Untrained>

Source

pub fn new() -> Self

Create a new RobustGaussianMixture instance

Source

pub fn n_components(self, n_components: usize) -> Self

Set the number of components

Source

pub fn covariance_type(self, covariance_type: CovarianceType) -> Self

Set the covariance type

Source

pub fn tol(self, tol: f64) -> Self

Set the convergence tolerance

Source

pub fn reg_covar(self, reg_covar: f64) -> Self

Set the regularization parameter

Source

pub fn max_iter(self, max_iter: usize) -> Self

Set the maximum number of iterations

Source

pub fn n_init(self, n_init: usize) -> Self

Set the number of initializations

Source

pub fn outlier_fraction(self, outlier_fraction: f64) -> Self

Set the expected fraction of outliers

Source

pub fn outlier_threshold(self, outlier_threshold: f64) -> Self

Set the outlier detection threshold (in standard deviations)

Source

pub fn robust_covariance(self, robust_covariance: bool) -> Self

Set whether to use robust covariance estimation

Source

pub fn random_state(self, random_state: u64) -> Self

Set the random state

Source§

impl RobustGaussianMixture<RobustGaussianMixtureTrained>

Source

pub fn weights(&self) -> &Array1<f64>

Get the mixture weights

Source

pub fn means(&self) -> &Array2<f64>

Get the component means

Source

pub fn covariances(&self) -> &[Array2<f64>]

Get the component covariances

Source

pub fn log_likelihood(&self) -> f64

Get the log likelihood of the fitted model

Source

pub fn n_iter(&self) -> usize

Get the number of iterations performed

Source

pub fn converged(&self) -> bool

Check if the algorithm converged

Source

pub fn bic(&self) -> f64

Get the Bayesian Information Criterion

Source

pub fn aic(&self) -> f64

Get the Akaike Information Criterion

Source

pub fn outlier_mask(&self) -> &Array1<bool>

Get the outlier mask

Source

pub fn n_outliers(&self) -> usize

Get the number of detected outliers

Source

pub fn predict_proba(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array2<f64>>

Predict probabilities for each component

Source

pub fn score_samples(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<f64>>

Compute the per-sample log-likelihood

Source

pub fn score(&self, X: &ArrayView2<'_, Float>) -> SklResult<f64>

Compute the average log-likelihood

Source

pub fn detect_outliers( &self, X: &ArrayView2<'_, Float>, ) -> SklResult<Array1<bool>>

Detect outliers in new data

Trait Implementations§

Source§

impl<S: Clone> Clone for RobustGaussianMixture<S>

Source§

fn clone(&self) -> RobustGaussianMixture<S>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<S: Debug> Debug for RobustGaussianMixture<S>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for RobustGaussianMixture<Untrained>

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl Estimator for RobustGaussianMixture<Untrained>

Source§

type Config = ()

Configuration type for the estimator
Source§

type Error = SklearsError

Error type for the estimator
Source§

type Float = f64

The numeric type used by this estimator
Source§

fn config(&self) -> &Self::Config

Get estimator configuration
Source§

fn validate_config(&self) -> Result<(), SklearsError>

Validate estimator configuration with detailed error context
Source§

fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>

Check if estimator is compatible with given data dimensions
Source§

fn metadata(&self) -> EstimatorMetadata

Get estimator metadata
Source§

impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ()> for RobustGaussianMixture<Untrained>

Source§

type Fitted = RobustGaussianMixture<RobustGaussianMixtureTrained>

The fitted model type
Source§

fn fit(self, X: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted>

Fit the model to the provided data with validation
Source§

fn fit_with_validation( self, x: &X, y: &Y, _x_val: Option<&X>, _y_val: Option<&Y>, ) -> Result<(Self::Fitted, FitMetrics), SklearsError>
where Self: Sized,

Fit with custom validation and early stopping
Source§

impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for RobustGaussianMixture<RobustGaussianMixtureTrained>

Source§

fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<i32>>

Make predictions on the provided data
Source§

fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>

Make predictions with confidence intervals

Auto Trait Implementations§

§

impl<S> Freeze for RobustGaussianMixture<S>
where S: Freeze,

§

impl<S> RefUnwindSafe for RobustGaussianMixture<S>
where S: RefUnwindSafe,

§

impl<S> Send for RobustGaussianMixture<S>
where S: Send,

§

impl<S> Sync for RobustGaussianMixture<S>
where S: Sync,

§

impl<S> Unpin for RobustGaussianMixture<S>
where S: Unpin,

§

impl<S> UnwindSafe for RobustGaussianMixture<S>
where S: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> StableApi for T
where T: Estimator,

Source§

const STABLE_SINCE: &'static str = "0.1.0"

API version this type was stabilized in
Source§

const HAS_EXPERIMENTAL_FEATURES: bool = false

Whether this API has any experimental features
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V