pub struct L1RegularizedGMM<S = Untrained> { /* private fields */ }Expand description
L1 Regularized Gaussian Mixture Model
Implements sparse Gaussian mixture modeling using L1 (LASSO) regularization. This promotes sparsity in the parameter estimates, which is useful for feature selection and high-dimensional data.
§Examples
use sklears_mixture::regularization::L1RegularizedGMM;
use sklears_core::traits::Fit;
use scirs2_core::ndarray::array;
let X = array![[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]];
let model = L1RegularizedGMM::builder()
.n_components(2)
.lambda(0.01)
.build();
let fitted = model.fit(&X.view(), &()).unwrap();Implementations§
Source§impl L1RegularizedGMM<Untrained>
impl L1RegularizedGMM<Untrained>
Sourcepub fn builder() -> L1RegularizedGMMBuilder
pub fn builder() -> L1RegularizedGMMBuilder
Create a new builder
Trait Implementations§
Source§impl<S: Clone> Clone for L1RegularizedGMM<S>
impl<S: Clone> Clone for L1RegularizedGMM<S>
Source§fn clone(&self) -> L1RegularizedGMM<S>
fn clone(&self) -> L1RegularizedGMM<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for L1RegularizedGMM<S>
impl<S: Debug> Debug for L1RegularizedGMM<S>
Source§impl Estimator for L1RegularizedGMM<Untrained>
impl Estimator for L1RegularizedGMM<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ()> for L1RegularizedGMM<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ()> for L1RegularizedGMM<Untrained>
Source§type Fitted = L1RegularizedGMM<L1RegularizedGMMTrained>
type Fitted = L1RegularizedGMM<L1RegularizedGMMTrained>
The fitted model type
Source§fn fit(self, X: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted>
fn fit(self, X: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<usize>, Dim<[usize; 1]>>> for L1RegularizedGMM<L1RegularizedGMMTrained>
impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<usize>, Dim<[usize; 1]>>> for L1RegularizedGMM<L1RegularizedGMMTrained>
Source§fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<usize>>
fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<usize>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<S> Freeze for L1RegularizedGMM<S>
impl<S> RefUnwindSafe for L1RegularizedGMM<S>where
S: RefUnwindSafe,
impl<S> Send for L1RegularizedGMM<S>where
S: Send,
impl<S> Sync for L1RegularizedGMM<S>where
S: Sync,
impl<S> Unpin for L1RegularizedGMM<S>where
S: Unpin,
impl<S> UnwindSafe for L1RegularizedGMM<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features