pub struct AdaptiveStreamingGMM<S = Untrained> { /* private fields */ }Expand description
Adaptive Streaming Gaussian Mixture Model
A streaming mixture model that automatically creates and deletes components based on data characteristics and model performance.
§Examples
use sklears_mixture::adaptive_streaming::{AdaptiveStreamingGMM, CreationCriterion};
use sklears_core::traits::Fit;
use scirs2_core::ndarray::array;
let model = AdaptiveStreamingGMM::builder()
.min_components(1)
.max_components(10)
.creation_criterion(CreationCriterion::LikelihoodThreshold { threshold: -5.0 })
.build();
let X = array![[1.0, 2.0], [1.5, 2.5], [10.0, 11.0]];
let fitted = model.fit(&X.view(), &()).unwrap();Implementations§
Source§impl AdaptiveStreamingGMM<Untrained>
impl AdaptiveStreamingGMM<Untrained>
Sourcepub fn builder() -> AdaptiveStreamingGMMBuilder
pub fn builder() -> AdaptiveStreamingGMMBuilder
Create a new builder
Source§impl AdaptiveStreamingGMM<AdaptiveStreamingGMMTrained>
impl AdaptiveStreamingGMM<AdaptiveStreamingGMMTrained>
Sourcepub fn partial_fit(&mut self, _x: &ArrayView1<'_, Float>) -> SklResult<()>
pub fn partial_fit(&mut self, _x: &ArrayView1<'_, Float>) -> SklResult<()>
Update the model with a new sample (online learning)
Sourcepub fn n_components(&self) -> usize
pub fn n_components(&self) -> usize
Get current number of components
Sourcepub fn creation_history(&self) -> &[usize]
pub fn creation_history(&self) -> &[usize]
Get component creation history
Sourcepub fn deletion_history(&self) -> &[usize]
pub fn deletion_history(&self) -> &[usize]
Get component deletion history
Trait Implementations§
Source§impl<S: Clone> Clone for AdaptiveStreamingGMM<S>
impl<S: Clone> Clone for AdaptiveStreamingGMM<S>
Source§fn clone(&self) -> AdaptiveStreamingGMM<S>
fn clone(&self) -> AdaptiveStreamingGMM<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for AdaptiveStreamingGMM<S>
impl<S: Debug> Debug for AdaptiveStreamingGMM<S>
Source§impl Estimator for AdaptiveStreamingGMM<Untrained>
impl Estimator for AdaptiveStreamingGMM<Untrained>
Source§type Config = AdaptiveStreamingConfig
type Config = AdaptiveStreamingConfig
Configuration type for the estimator
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ()> for AdaptiveStreamingGMM<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ()> for AdaptiveStreamingGMM<Untrained>
Source§type Fitted = AdaptiveStreamingGMM<AdaptiveStreamingGMMTrained>
type Fitted = AdaptiveStreamingGMM<AdaptiveStreamingGMMTrained>
The fitted model type
Source§fn fit(self, X: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted>
fn fit(self, X: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<usize>, Dim<[usize; 1]>>> for AdaptiveStreamingGMM<AdaptiveStreamingGMMTrained>
impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<usize>, Dim<[usize; 1]>>> for AdaptiveStreamingGMM<AdaptiveStreamingGMMTrained>
Source§fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<usize>>
fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<usize>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<S> Freeze for AdaptiveStreamingGMM<S>
impl<S> RefUnwindSafe for AdaptiveStreamingGMM<S>where
S: RefUnwindSafe,
impl<S> Send for AdaptiveStreamingGMM<S>where
S: Send,
impl<S> Sync for AdaptiveStreamingGMM<S>where
S: Sync,
impl<S> Unpin for AdaptiveStreamingGMM<S>where
S: Unpin,
impl<S> UnwindSafe for AdaptiveStreamingGMM<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features