pub struct DiffusionMaps<S = Untrained> { /* private fields */ }Expand description
Diffusion Maps
Diffusion Maps is a nonlinear dimensionality reduction technique that captures the intrinsic geometry of data through the eigenfunctions of a Markov chain. It constructs a diffusion process on the data and uses the eigenvectors of the diffusion operator to embed the data.
§Parameters
n_components- Number of coordinates for the manifolddiffusion_time- Diffusion time parameter (t)epsilon- Bandwidth parameter for Gaussian kernelalpha- Normalization parameter (0 for symmetric, 1 for row-stochastic)eigen_solver- The eigensolver to userandom_state- Random state for reproducibilityn_jobs- Number of parallel jobs
§Examples
use sklears_manifold::DiffusionMaps;
use sklears_core::traits::{Transform, Fit};
use scirs2_core::ndarray::array;
let x = array![[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0], [10.0, 11.0, 12.0]];
let dm = DiffusionMaps::new()
.n_components(2)
.epsilon(1.0);
let fitted = dm.fit(&x.view(), &()).unwrap();
let embedded = fitted.transform(&x.view()).unwrap();Implementations§
Source§impl DiffusionMaps<Untrained>
impl DiffusionMaps<Untrained>
Sourcepub fn n_components(self, n_components: usize) -> Self
pub fn n_components(self, n_components: usize) -> Self
Set the number of components
Sourcepub fn diffusion_time(self, diffusion_time: usize) -> Self
pub fn diffusion_time(self, diffusion_time: usize) -> Self
Set the diffusion time
Sourcepub fn eigen_solver(self, eigen_solver: &str) -> Self
pub fn eigen_solver(self, eigen_solver: &str) -> Self
Set the eigen solver
Sourcepub fn random_state(self, random_state: Option<u64>) -> Self
pub fn random_state(self, random_state: Option<u64>) -> Self
Set the random state
Source§impl DiffusionMaps<DiffusionMapsTrained>
impl DiffusionMaps<DiffusionMapsTrained>
Sourcepub fn eigenvalues(&self) -> &Array2<f64>
pub fn eigenvalues(&self) -> &Array2<f64>
Get the eigenvalues
Sourcepub fn eigenvectors(&self) -> &Array2<f64>
pub fn eigenvectors(&self) -> &Array2<f64>
Get the eigenvectors
Sourcepub fn affinity_matrix(&self) -> &Array2<f64>
pub fn affinity_matrix(&self) -> &Array2<f64>
Get the affinity matrix
Trait Implementations§
Source§impl<S: Clone> Clone for DiffusionMaps<S>
impl<S: Clone> Clone for DiffusionMaps<S>
Source§fn clone(&self) -> DiffusionMaps<S>
fn clone(&self) -> DiffusionMaps<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for DiffusionMaps<S>
impl<S: Debug> Debug for DiffusionMaps<S>
Source§impl Default for DiffusionMaps<Untrained>
impl Default for DiffusionMaps<Untrained>
Source§impl Estimator for DiffusionMaps<Untrained>
impl Estimator for DiffusionMaps<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ()> for DiffusionMaps<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ()> for DiffusionMaps<Untrained>
Source§type Fitted = DiffusionMaps<DiffusionMapsTrained>
type Fitted = DiffusionMaps<DiffusionMapsTrained>
The fitted model type
Source§fn fit(self, x: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted>
fn fit(self, x: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Auto Trait Implementations§
impl<S> Freeze for DiffusionMaps<S>where
S: Freeze,
impl<S> RefUnwindSafe for DiffusionMaps<S>where
S: RefUnwindSafe,
impl<S> Send for DiffusionMaps<S>where
S: Send,
impl<S> Sync for DiffusionMaps<S>where
S: Sync,
impl<S> Unpin for DiffusionMaps<S>where
S: Unpin,
impl<S> UnwindSafe for DiffusionMaps<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features