pub struct MultiTaskKernelRidgeRegression<State = Untrained> {
pub approximation_method: ApproximationMethod,
pub alpha: Float,
pub task_regularization: TaskRegularization,
pub solver: Solver,
pub random_state: Option<u64>,
/* private fields */
}Expand description
Multi-Task Kernel Ridge Regression
Performs kernel ridge regression simultaneously across multiple related tasks, with optional cross-task regularization to encourage similarity between tasks.
This is particularly useful when you have multiple regression targets that are related and can benefit from shared representations and joint learning.
§Parameters
approximation_method- Method for kernel approximationalpha- Within-task regularization parametertask_regularization- Cross-task regularization strategysolver- Method for solving the linear systemrandom_state- Random seed for reproducibility
§Examples
ⓘ
use sklears_kernel_approximation::kernel_ridge_regression::{Fields§
§approximation_method: ApproximationMethod§alpha: Float§task_regularization: TaskRegularization§solver: Solver§random_state: Option<u64>Implementations§
Source§impl MultiTaskKernelRidgeRegression<Untrained>
impl MultiTaskKernelRidgeRegression<Untrained>
Sourcepub fn new(approximation_method: ApproximationMethod) -> Self
pub fn new(approximation_method: ApproximationMethod) -> Self
Create a new multi-task kernel ridge regression model
Sourcepub fn task_regularization(self, regularization: TaskRegularization) -> Self
pub fn task_regularization(self, regularization: TaskRegularization) -> Self
Set cross-task regularization strategy
Sourcepub fn random_state(self, seed: u64) -> Self
pub fn random_state(self, seed: u64) -> Self
Set random state for reproducibility
Source§impl MultiTaskKernelRidgeRegression<Trained>
impl MultiTaskKernelRidgeRegression<Trained>
Trait Implementations§
Source§impl<State: Clone> Clone for MultiTaskKernelRidgeRegression<State>
impl<State: Clone> Clone for MultiTaskKernelRidgeRegression<State>
Source§fn clone(&self) -> MultiTaskKernelRidgeRegression<State>
fn clone(&self) -> MultiTaskKernelRidgeRegression<State>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<State: Debug> Debug for MultiTaskKernelRidgeRegression<State>
impl<State: Debug> Debug for MultiTaskKernelRidgeRegression<State>
Source§impl Estimator for MultiTaskKernelRidgeRegression<Untrained>
impl Estimator for MultiTaskKernelRidgeRegression<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for MultiTaskKernelRidgeRegression<Untrained>
impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for MultiTaskKernelRidgeRegression<Untrained>
Source§type Fitted = MultiTaskKernelRidgeRegression<Trained>
type Fitted = MultiTaskKernelRidgeRegression<Trained>
The fitted model type
Source§fn fit(self, x: &Array2<Float>, y: &Array2<Float>) -> Result<Self::Fitted>
fn fit(self, x: &Array2<Float>, y: &Array2<Float>) -> Result<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for MultiTaskKernelRidgeRegression<Trained>
impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for MultiTaskKernelRidgeRegression<Trained>
Source§fn predict(&self, x: &Array2<Float>) -> Result<Array2<Float>>
fn predict(&self, x: &Array2<Float>) -> Result<Array2<Float>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<State> Freeze for MultiTaskKernelRidgeRegression<State>
impl<State> RefUnwindSafe for MultiTaskKernelRidgeRegression<State>where
State: RefUnwindSafe,
impl<State> Send for MultiTaskKernelRidgeRegression<State>where
State: Send,
impl<State> Sync for MultiTaskKernelRidgeRegression<State>where
State: Sync,
impl<State> Unpin for MultiTaskKernelRidgeRegression<State>where
State: Unpin,
impl<State> UnwindSafe for MultiTaskKernelRidgeRegression<State>where
State: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features