pub struct OnlineKernelRidgeRegression<State = Untrained> {
pub base_model: KernelRidgeRegression<State>,
pub forgetting_factor: Float,
pub update_frequency: usize,
/* private fields */
}Expand description
Online/Incremental Kernel Ridge Regression
This variant allows for online updates to the model as new data arrives.
Fields§
§base_model: KernelRidgeRegression<State>Base kernel ridge regression
forgetting_factor: FloatForgetting factor for online updates
update_frequency: usizeUpdate frequency
Implementations§
Source§impl OnlineKernelRidgeRegression<Untrained>
impl OnlineKernelRidgeRegression<Untrained>
Sourcepub fn new(approximation_method: ApproximationMethod) -> Self
pub fn new(approximation_method: ApproximationMethod) -> Self
Create a new online kernel ridge regression model
Sourcepub fn forgetting_factor(self, factor: Float) -> Self
pub fn forgetting_factor(self, factor: Float) -> Self
Set forgetting factor
Sourcepub fn update_frequency(self, frequency: usize) -> Self
pub fn update_frequency(self, frequency: usize) -> Self
Set update frequency
Sourcepub fn random_state(self, seed: u64) -> Self
pub fn random_state(self, seed: u64) -> Self
Set random state
Source§impl OnlineKernelRidgeRegression<Trained>
impl OnlineKernelRidgeRegression<Trained>
Sourcepub fn partial_fit(
self,
x_new: &Array2<Float>,
y_new: &Array1<Float>,
) -> Result<Self>
pub fn partial_fit( self, x_new: &Array2<Float>, y_new: &Array1<Float>, ) -> Result<Self>
Update the model with new data
Sourcepub fn update_count(&self) -> usize
pub fn update_count(&self) -> usize
Get the number of updates performed
Trait Implementations§
Source§impl<State: Clone> Clone for OnlineKernelRidgeRegression<State>
impl<State: Clone> Clone for OnlineKernelRidgeRegression<State>
Source§fn clone(&self) -> OnlineKernelRidgeRegression<State>
fn clone(&self) -> OnlineKernelRidgeRegression<State>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<State: Debug> Debug for OnlineKernelRidgeRegression<State>
impl<State: Debug> Debug for OnlineKernelRidgeRegression<State>
Source§impl Estimator for OnlineKernelRidgeRegression<Untrained>
impl Estimator for OnlineKernelRidgeRegression<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for OnlineKernelRidgeRegression<Untrained>
impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for OnlineKernelRidgeRegression<Untrained>
Source§type Fitted = OnlineKernelRidgeRegression<Trained>
type Fitted = OnlineKernelRidgeRegression<Trained>
The fitted model type
Source§fn fit(self, x: &Array2<Float>, y: &Array1<Float>) -> Result<Self::Fitted>
fn fit(self, x: &Array2<Float>, y: &Array1<Float>) -> Result<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for OnlineKernelRidgeRegression<Trained>
impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for OnlineKernelRidgeRegression<Trained>
Source§fn predict(&self, x: &Array2<Float>) -> Result<Array1<Float>>
fn predict(&self, x: &Array2<Float>) -> Result<Array1<Float>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<State> Freeze for OnlineKernelRidgeRegression<State>
impl<State> RefUnwindSafe for OnlineKernelRidgeRegression<State>where
State: RefUnwindSafe,
impl<State> Send for OnlineKernelRidgeRegression<State>where
State: Send,
impl<State> Sync for OnlineKernelRidgeRegression<State>where
State: Sync,
impl<State> Unpin for OnlineKernelRidgeRegression<State>where
State: Unpin,
impl<State> UnwindSafe for OnlineKernelRidgeRegression<State>where
State: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features