pub struct Nystroem<State = Untrained> {
pub kernel: Kernel,
pub n_components: usize,
pub sampling_strategy: SamplingStrategy,
pub random_state: Option<u64>,
/* private fields */
}Expand description
Nyström method for kernel approximation
General method for kernel approximation using eigendecomposition on a subset of training data. Works with any kernel function and supports multiple sampling strategies for improved approximation quality.
§Parameters
kernel- Kernel function to approximaten_components- Number of samples to use for approximation (default: 100)sampling_strategy- Strategy for selecting landmark pointsrandom_state- Random seed for reproducibility
§Examples
ⓘ
use sklears_kernel_approximation::nystroem::{Nystroem, Kernel, SamplingStrategy};
use sklears_core::traits::{Transform, Fit, Untrained}
use scirs2_core::ndarray::array;
let X = array![[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]];
let nystroem = Nystroem::new(Kernel::Rbf { gamma: 1.0 }, 3)
.sampling_strategy(SamplingStrategy::LeverageScore);
let fitted_nystroem = nystroem.fit(&X, &()).unwrap();
let X_transformed = fitted_nystroem.transform(&X).unwrap();
assert_eq!(X_transformed.shape(), &[3, 3]);Nystroem
Fields§
§kernel: KernelKernel function
n_components: usizeNumber of components for approximation
sampling_strategy: SamplingStrategySampling strategy for landmark selection
random_state: Option<u64>Random seed
Implementations§
Source§impl Nystroem<Untrained>
impl Nystroem<Untrained>
Sourcepub fn sampling_strategy(self, strategy: SamplingStrategy) -> Self
pub fn sampling_strategy(self, strategy: SamplingStrategy) -> Self
Set the sampling strategy
Sourcepub fn random_state(self, seed: u64) -> Self
pub fn random_state(self, seed: u64) -> Self
Set random state for reproducibility
Source§impl Nystroem<Trained>
impl Nystroem<Trained>
Sourcepub fn components(&self) -> &Array2<Float>
pub fn components(&self) -> &Array2<Float>
Get the selected component samples
Sourcepub fn component_indices(&self) -> &[usize]
pub fn component_indices(&self) -> &[usize]
Get the component indices
Sourcepub fn normalization(&self) -> &Array2<Float>
pub fn normalization(&self) -> &Array2<Float>
Get the normalization matrix
Trait Implementations§
Source§impl Estimator for Nystroem<Untrained>
impl Estimator for Nystroem<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ()> for Nystroem<Untrained>
impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ()> for Nystroem<Untrained>
Source§fn fit(self, x: &Array2<Float>, _y: &()) -> Result<Self::Fitted>
fn fit(self, x: &Array2<Float>, _y: &()) -> Result<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Auto Trait Implementations§
impl<State> Freeze for Nystroem<State>
impl<State> RefUnwindSafe for Nystroem<State>where
State: RefUnwindSafe,
impl<State> Send for Nystroem<State>where
State: Send,
impl<State> Sync for Nystroem<State>where
State: Sync,
impl<State> Unpin for Nystroem<State>where
State: Unpin,
impl<State> UnwindSafe for Nystroem<State>where
State: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features