pub struct RobustKernelRidgeRegression<State = Untrained> {
pub approximation_method: ApproximationMethod,
pub alpha: Float,
pub robust_loss: RobustLoss,
pub solver: Solver,
pub max_iter: usize,
pub tolerance: Float,
pub random_state: Option<u64>,
/* private fields */
}Expand description
Robust kernel ridge regression
This implements robust variants of kernel ridge regression that are resistant to outliers and noise in the data. Multiple robust loss functions are supported.
§Parameters
approximation_method- Method for kernel approximationalpha- Regularization strengthrobust_loss- Robust loss function to usesolver- Method for solving the optimization problemmax_iter- Maximum number of iterations for robust optimizationtolerance- Convergence tolerancerandom_state- Random seed for reproducibility
§Examples
ⓘ
use sklears_kernel_approximation::kernel_ridge_regression::{Fields§
§approximation_method: ApproximationMethod§alpha: Float§robust_loss: RobustLoss§solver: Solver§max_iter: usize§tolerance: Float§random_state: Option<u64>Implementations§
Source§impl RobustKernelRidgeRegression<Untrained>
impl RobustKernelRidgeRegression<Untrained>
Sourcepub fn new(approximation_method: ApproximationMethod) -> Self
pub fn new(approximation_method: ApproximationMethod) -> Self
Create a new robust kernel ridge regression model
Sourcepub fn robust_loss(self, robust_loss: RobustLoss) -> Self
pub fn robust_loss(self, robust_loss: RobustLoss) -> Self
Set robust loss function
Sourcepub fn random_state(self, seed: u64) -> Self
pub fn random_state(self, seed: u64) -> Self
Set random state for reproducibility
Source§impl RobustKernelRidgeRegression<Trained>
impl RobustKernelRidgeRegression<Trained>
Sourcepub fn sample_weights(&self) -> Option<&Array1<Float>>
pub fn sample_weights(&self) -> Option<&Array1<Float>>
Get the sample weights from robust fitting
Sourcepub fn robust_residuals(
&self,
x: &Array2<Float>,
y: &Array1<Float>,
) -> Result<(Array1<Float>, Array1<Float>)>
pub fn robust_residuals( &self, x: &Array2<Float>, y: &Array1<Float>, ) -> Result<(Array1<Float>, Array1<Float>)>
Compute robust residuals and their weights
Sourcepub fn outlier_scores(&self) -> Option<Array1<Float>>
pub fn outlier_scores(&self) -> Option<Array1<Float>>
Get outlier scores (lower weight means more likely to be outlier)
Trait Implementations§
Source§impl<State: Clone> Clone for RobustKernelRidgeRegression<State>
impl<State: Clone> Clone for RobustKernelRidgeRegression<State>
Source§fn clone(&self) -> RobustKernelRidgeRegression<State>
fn clone(&self) -> RobustKernelRidgeRegression<State>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<State: Debug> Debug for RobustKernelRidgeRegression<State>
impl<State: Debug> Debug for RobustKernelRidgeRegression<State>
Source§impl Estimator for RobustKernelRidgeRegression<Untrained>
impl Estimator for RobustKernelRidgeRegression<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for RobustKernelRidgeRegression<Untrained>
impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for RobustKernelRidgeRegression<Untrained>
Source§type Fitted = RobustKernelRidgeRegression<Trained>
type Fitted = RobustKernelRidgeRegression<Trained>
The fitted model type
Source§fn fit(self, x: &Array2<Float>, y: &Array1<Float>) -> Result<Self::Fitted>
fn fit(self, x: &Array2<Float>, y: &Array1<Float>) -> Result<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for RobustKernelRidgeRegression<Trained>
impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for RobustKernelRidgeRegression<Trained>
Source§fn predict(&self, x: &Array2<Float>) -> Result<Array1<Float>>
fn predict(&self, x: &Array2<Float>) -> Result<Array1<Float>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<State> Freeze for RobustKernelRidgeRegression<State>
impl<State> RefUnwindSafe for RobustKernelRidgeRegression<State>where
State: RefUnwindSafe,
impl<State> Send for RobustKernelRidgeRegression<State>where
State: Send,
impl<State> Sync for RobustKernelRidgeRegression<State>where
State: Sync,
impl<State> Unpin for RobustKernelRidgeRegression<State>where
State: Unpin,
impl<State> UnwindSafe for RobustKernelRidgeRegression<State>where
State: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features