pub struct CustomKernelSampler<K, State = Untrained>where
K: KernelFunction,{
pub kernel: K,
pub n_components: usize,
pub random_state: Option<u64>,
/* private fields */
}Expand description
Custom kernel random feature generator
Generates random Fourier features for any custom kernel function that implements the KernelFunction trait. This provides a flexible framework for kernel approximation with user-defined kernels.
§Parameters
kernel- Custom kernel function implementing KernelFunction traitn_components- Number of random features to generate (default: 100)random_state- Random seed for reproducibility
§Examples
ⓘ
use sklears_kernel_approximation::custom_kernel::{CustomKernelSampler, CustomRBFKernel};
use sklears_core::traits::{Transform, Fit, Untrained}
use scirs2_core::ndarray::array;
let X = array![[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]];
let kernel = CustomRBFKernel::new(0.1);
let sampler = CustomKernelSampler::new(kernel, 100);
let fitted_sampler = sampler.fit(&X, &()).unwrap();
let X_transformed = fitted_sampler.transform(&X).unwrap();
assert_eq!(X_transformed.shape(), &[3, 100]);CustomKernelSampler
Fields§
§kernel: KCustom kernel function
n_components: usizeNumber of random features
random_state: Option<u64>Random seed
Implementations§
Source§impl<K> CustomKernelSampler<K, Untrained>where
K: KernelFunction,
impl<K> CustomKernelSampler<K, Untrained>where
K: KernelFunction,
Source§impl<K> CustomKernelSampler<K, Trained>where
K: KernelFunction,
impl<K> CustomKernelSampler<K, Trained>where
K: KernelFunction,
Sourcepub fn random_weights(&self) -> &Array2<Float>
pub fn random_weights(&self) -> &Array2<Float>
Get the random weights
Sourcepub fn random_offset(&self) -> &Array1<Float>
pub fn random_offset(&self) -> &Array1<Float>
Get the random offset
Sourcepub fn kernel_description(&self) -> String
pub fn kernel_description(&self) -> String
Get the kernel description
Trait Implementations§
Source§impl<K, State: Clone> Clone for CustomKernelSampler<K, State>where
K: KernelFunction + Clone,
impl<K, State: Clone> Clone for CustomKernelSampler<K, State>where
K: KernelFunction + Clone,
Source§fn clone(&self) -> CustomKernelSampler<K, State>
fn clone(&self) -> CustomKernelSampler<K, State>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<K, State: Debug> Debug for CustomKernelSampler<K, State>where
K: KernelFunction + Debug,
impl<K, State: Debug> Debug for CustomKernelSampler<K, State>where
K: KernelFunction + Debug,
Source§impl<K> Estimator for CustomKernelSampler<K, Untrained>where
K: KernelFunction,
impl<K> Estimator for CustomKernelSampler<K, Untrained>where
K: KernelFunction,
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl<K> Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ()> for CustomKernelSampler<K, Untrained>where
K: KernelFunction,
impl<K> Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ()> for CustomKernelSampler<K, Untrained>where
K: KernelFunction,
Source§type Fitted = CustomKernelSampler<K, Trained>
type Fitted = CustomKernelSampler<K, Trained>
The fitted model type
Source§fn fit(self, x: &Array2<Float>, _y: &()) -> Result<Self::Fitted>
fn fit(self, x: &Array2<Float>, _y: &()) -> Result<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Auto Trait Implementations§
impl<K, State> Freeze for CustomKernelSampler<K, State>where
K: Freeze,
impl<K, State> RefUnwindSafe for CustomKernelSampler<K, State>where
K: RefUnwindSafe,
State: RefUnwindSafe,
impl<K, State> Send for CustomKernelSampler<K, State>where
State: Send,
impl<K, State> Sync for CustomKernelSampler<K, State>where
State: Sync,
impl<K, State> Unpin for CustomKernelSampler<K, State>
impl<K, State> UnwindSafe for CustomKernelSampler<K, State>where
K: UnwindSafe,
State: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features