Module quantum_kernel_methods

Module quantum_kernel_methods 

Source
Expand description

Quantum Kernel Methods and Quantum-Inspired Approximations

This module implements quantum kernel approximations and quantum-inspired classical algorithms for kernel methods. These methods simulate quantum feature maps using classical computation while providing theoretical quantum advantage insights.

§References

  • Havlicek et al. (2019): “Supervised learning with quantum-enhanced feature spaces”
  • Schuld & Killoran (2019): “Quantum Machine Learning in Feature Hilbert Spaces”
  • Liu et al. (2021): “Rigorous Guarantees for Quantum Computational Advantage”
  • Huang et al. (2021): “Power of data in quantum machine learning”

Structs§

QuantumKernelApproximation
Quantum Kernel Approximation
QuantumKernelConfig
Configuration for quantum kernel approximation

Enums§

EntanglementPattern
Entanglement patterns for quantum circuits
QuantumFeatureMap
Quantum feature map types