pub struct MetaLearningKernelSelector<State = Untrained> { /* private fields */ }Expand description
Meta-Learning Kernel Selector
Automatically selects the best kernel approximation method based on dataset characteristics and historical performance.
§Examples
ⓘ
use sklears_kernel_approximation::meta_learning_kernels::{MetaLearningKernelSelector, MetaLearningConfig};
use scirs2_core::ndarray::array;
use sklears_core::traits::{Fit, Transform};
let config = MetaLearningConfig::default();
let selector = MetaLearningKernelSelector::new(config);
let X = array![[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]];
let fitted = selector.fit(&X, &()).unwrap();
let features = fitted.transform(&X).unwrap();Implementations§
Source§impl MetaLearningKernelSelector<Untrained>
impl MetaLearningKernelSelector<Untrained>
Sourcepub fn new(config: MetaLearningConfig) -> Self
pub fn new(config: MetaLearningConfig) -> Self
Create a new meta-learning kernel selector
Sourcepub fn with_components(n_components: usize) -> Self
pub fn with_components(n_components: usize) -> Self
Create with default configuration
Sourcepub fn add_task_history(self, task: TaskMetadata) -> Self
pub fn add_task_history(self, task: TaskMetadata) -> Self
Add historical task data for meta-learning
Sourcepub fn strategy(self, strategy: MetaLearningStrategy) -> Self
pub fn strategy(self, strategy: MetaLearningStrategy) -> Self
Set meta-learning strategy
Source§impl MetaLearningKernelSelector<Trained>
impl MetaLearningKernelSelector<Trained>
Sourcepub fn selected_kernel(&self) -> MetaKernelType
pub fn selected_kernel(&self) -> MetaKernelType
Get the selected kernel type
Sourcepub fn selected_hyperparameters(&self) -> &HashMap<String, Float>
pub fn selected_hyperparameters(&self) -> &HashMap<String, Float>
Get the selected hyperparameters
Sourcepub fn kernel_weights(&self) -> &Array2<Float>
pub fn kernel_weights(&self) -> &Array2<Float>
Get kernel weights
Sourcepub fn kernel_offset(&self) -> &Array1<Float>
pub fn kernel_offset(&self) -> &Array1<Float>
Get kernel offset
Trait Implementations§
Source§impl<State: Clone> Clone for MetaLearningKernelSelector<State>
impl<State: Clone> Clone for MetaLearningKernelSelector<State>
Source§fn clone(&self) -> MetaLearningKernelSelector<State>
fn clone(&self) -> MetaLearningKernelSelector<State>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<State: Debug> Debug for MetaLearningKernelSelector<State>
impl<State: Debug> Debug for MetaLearningKernelSelector<State>
Source§impl Estimator for MetaLearningKernelSelector<Untrained>
impl Estimator for MetaLearningKernelSelector<Untrained>
Source§type Config = MetaLearningConfig
type Config = MetaLearningConfig
Configuration type for the estimator
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ()> for MetaLearningKernelSelector<Untrained>
impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ()> for MetaLearningKernelSelector<Untrained>
Source§type Fitted = MetaLearningKernelSelector<Trained>
type Fitted = MetaLearningKernelSelector<Trained>
The fitted model type
Source§fn fit(self, x: &Array2<Float>, _y: &()) -> Result<Self::Fitted>
fn fit(self, x: &Array2<Float>, _y: &()) -> Result<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Auto Trait Implementations§
impl<State> Freeze for MetaLearningKernelSelector<State>
impl<State> RefUnwindSafe for MetaLearningKernelSelector<State>where
State: RefUnwindSafe,
impl<State> Send for MetaLearningKernelSelector<State>where
State: Send,
impl<State> Sync for MetaLearningKernelSelector<State>where
State: Sync,
impl<State> Unpin for MetaLearningKernelSelector<State>where
State: Unpin,
impl<State> UnwindSafe for MetaLearningKernelSelector<State>where
State: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features