pub struct RandomForestImputer<S = Untrained> { /* private fields */ }Expand description
Random Forest Imputer
Uses random forest regression/classification to impute missing values. For each feature with missing values, trains a random forest using other features as predictors.
§Parameters
n_estimators- Number of trees in the forestmax_depth- Maximum depth of treesmin_samples_split- Minimum samples required to split a nodemin_samples_leaf- Minimum samples required at a leaf nodemax_features- Number of features to consider for best splitbootstrap- Whether to use bootstrap samplingrandom_state- Random state for reproducibilitymissing_values- The placeholder for missing values
§Examples
use sklears_impute::RandomForestImputer;
use sklears_core::traits::{Transform, Fit};
use scirs2_core::ndarray::array;
let X = array![[1.0, 2.0, 3.0], [f64::NAN, 3.0, 4.0], [7.0, f64::NAN, 6.0]];
let imputer = RandomForestImputer::new()
.n_estimators(100)
.max_depth(10);
let fitted = imputer.fit(&X.view(), &()).unwrap();
let X_imputed = fitted.transform(&X.view()).unwrap();Implementations§
Source§impl RandomForestImputer<Untrained>
impl RandomForestImputer<Untrained>
Sourcepub fn n_estimators(self, n_estimators: usize) -> Self
pub fn n_estimators(self, n_estimators: usize) -> Self
Set the number of estimators
Sourcepub fn min_samples_split(self, min_samples_split: usize) -> Self
pub fn min_samples_split(self, min_samples_split: usize) -> Self
Set the minimum samples split
Sourcepub fn min_samples_leaf(self, min_samples_leaf: usize) -> Self
pub fn min_samples_leaf(self, min_samples_leaf: usize) -> Self
Set the minimum samples leaf
Sourcepub fn max_features(self, max_features: String) -> Self
pub fn max_features(self, max_features: String) -> Self
Set the max features strategy
Sourcepub fn random_state(self, random_state: u64) -> Self
pub fn random_state(self, random_state: u64) -> Self
Set the random state
Sourcepub fn missing_values(self, missing_values: f64) -> Self
pub fn missing_values(self, missing_values: f64) -> Self
Set the missing values placeholder
Trait Implementations§
Source§impl<S: Clone> Clone for RandomForestImputer<S>
impl<S: Clone> Clone for RandomForestImputer<S>
Source§fn clone(&self) -> RandomForestImputer<S>
fn clone(&self) -> RandomForestImputer<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for RandomForestImputer<S>
impl<S: Debug> Debug for RandomForestImputer<S>
Source§impl Default for RandomForestImputer<Untrained>
impl Default for RandomForestImputer<Untrained>
Source§impl Estimator for RandomForestImputer<Untrained>
impl Estimator for RandomForestImputer<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ()> for RandomForestImputer<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ()> for RandomForestImputer<Untrained>
Source§type Fitted = RandomForestImputer<RandomForestImputerTrained>
type Fitted = RandomForestImputer<RandomForestImputerTrained>
The fitted model type
Source§fn fit(self, X: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted>
fn fit(self, X: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Auto Trait Implementations§
impl<S> Freeze for RandomForestImputer<S>where
S: Freeze,
impl<S> RefUnwindSafe for RandomForestImputer<S>where
S: RefUnwindSafe,
impl<S> Send for RandomForestImputer<S>where
S: Send,
impl<S> Sync for RandomForestImputer<S>where
S: Sync,
impl<S> Unpin for RandomForestImputer<S>where
S: Unpin,
impl<S> UnwindSafe for RandomForestImputer<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features