pub struct ReproducingKernelImputer<S = Untrained> { /* private fields */ }Expand description
Reproducing Kernel Hilbert Space (RKHS) Imputer
Advanced kernel-based imputation using reproducing kernel methods with multiple kernel learning, regularization, and adaptive kernel selection. This method leverages the rich structure of RKHS for sophisticated imputation.
§Parameters
kernels- List of kernel functions to combinekernel_weights- Weights for kernel combinationregularization- Regularization method (‘ridge’, ‘lasso’, ‘elastic_net’)lambda_reg- Regularization parameteradaptive_weights- Whether to adaptively learn kernel weightsinterpolation_method- Method for kernel interpolationsmoothing_parameter- Smoothing parameter for kernel methodsmissing_values- The placeholder for missing values
§Examples
use sklears_impute::ReproducingKernelImputer;
use sklears_core::traits::{Transform, Fit};
use scirs2_core::ndarray::array;
let X = array![[1.0, 2.0, 3.0], [f64::NAN, 3.0, 4.0], [7.0, f64::NAN, 6.0]];
let imputer = ReproducingKernelImputer::new()
.kernels(vec!["rbf".to_string(), "periodic".to_string()])
.regularization("ridge".to_string())
.lambda_reg(0.01);
let fitted = imputer.fit(&X.view(), &()).unwrap();
let X_imputed = fitted.transform(&X.view()).unwrap();Implementations§
Source§impl ReproducingKernelImputer<Untrained>
impl ReproducingKernelImputer<Untrained>
Sourcepub fn kernel_weights(self, weights: Vec<f64>) -> Self
pub fn kernel_weights(self, weights: Vec<f64>) -> Self
Set the kernel combination weights
Sourcepub fn kernel_params(
self,
params: HashMap<String, HashMap<String, f64>>,
) -> Self
pub fn kernel_params( self, params: HashMap<String, HashMap<String, f64>>, ) -> Self
Set parameters for specific kernels
Sourcepub fn regularization(self, regularization: String) -> Self
pub fn regularization(self, regularization: String) -> Self
Set the regularization method
Sourcepub fn lambda_reg(self, lambda_reg: f64) -> Self
pub fn lambda_reg(self, lambda_reg: f64) -> Self
Set the regularization parameter
Sourcepub fn alpha_elastic(self, alpha_elastic: f64) -> Self
pub fn alpha_elastic(self, alpha_elastic: f64) -> Self
Set the elastic net mixing parameter
Sourcepub fn adaptive_weights(self, adaptive_weights: bool) -> Self
pub fn adaptive_weights(self, adaptive_weights: bool) -> Self
Set whether to adaptively learn kernel weights
Sourcepub fn interpolation_method(self, method: String) -> Self
pub fn interpolation_method(self, method: String) -> Self
Set the interpolation method
Sourcepub fn smoothing_parameter(self, smoothing_parameter: f64) -> Self
pub fn smoothing_parameter(self, smoothing_parameter: f64) -> Self
Set the smoothing parameter
Sourcepub fn missing_values(self, missing_values: f64) -> Self
pub fn missing_values(self, missing_values: f64) -> Self
Set the missing values placeholder
Sourcepub fn normalize_kernels(self, normalize_kernels: bool) -> Self
pub fn normalize_kernels(self, normalize_kernels: bool) -> Self
Set whether to normalize kernel matrices
Source§impl ReproducingKernelImputer<ReproducingKernelImputerTrained>
impl ReproducingKernelImputer<ReproducingKernelImputerTrained>
Sourcepub fn learned_kernel_weights(&self) -> &HashMap<usize, Vec<f64>>
pub fn learned_kernel_weights(&self) -> &HashMap<usize, Vec<f64>>
Get the learned kernel weights for each feature
Sourcepub fn regularization_path(&self) -> &HashMap<usize, Vec<f64>>
pub fn regularization_path(&self) -> &HashMap<usize, Vec<f64>>
Get the regularization path scores for model selection
Sourcepub fn bias_terms(&self) -> &HashMap<usize, f64>
pub fn bias_terms(&self) -> &HashMap<usize, f64>
Get the bias terms for each feature
Trait Implementations§
Source§impl<S: Clone> Clone for ReproducingKernelImputer<S>
impl<S: Clone> Clone for ReproducingKernelImputer<S>
Source§fn clone(&self) -> ReproducingKernelImputer<S>
fn clone(&self) -> ReproducingKernelImputer<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for ReproducingKernelImputer<S>
impl<S: Debug> Debug for ReproducingKernelImputer<S>
Source§impl Default for ReproducingKernelImputer<Untrained>
impl Default for ReproducingKernelImputer<Untrained>
Source§impl Estimator for ReproducingKernelImputer<Untrained>
impl Estimator for ReproducingKernelImputer<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ()> for ReproducingKernelImputer<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ()> for ReproducingKernelImputer<Untrained>
Source§type Fitted = ReproducingKernelImputer<ReproducingKernelImputerTrained>
type Fitted = ReproducingKernelImputer<ReproducingKernelImputerTrained>
The fitted model type
Source§fn fit(self, X: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted>
fn fit(self, X: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Auto Trait Implementations§
impl<S> Freeze for ReproducingKernelImputer<S>where
S: Freeze,
impl<S> RefUnwindSafe for ReproducingKernelImputer<S>where
S: RefUnwindSafe,
impl<S> Send for ReproducingKernelImputer<S>where
S: Send,
impl<S> Sync for ReproducingKernelImputer<S>where
S: Sync,
impl<S> Unpin for ReproducingKernelImputer<S>where
S: Unpin,
impl<S> UnwindSafe for ReproducingKernelImputer<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features