pub struct RobustGaussianProcessRegressor<S = Untrained> { /* private fields */ }Expand description
Robust Gaussian Process Regressor
Implementations§
Source§impl RobustGaussianProcessRegressor<Untrained>
impl RobustGaussianProcessRegressor<Untrained>
Sourcepub fn builder() -> RobustGPBuilder
pub fn builder() -> RobustGPBuilder
Create a builder for robust GP
Sourcepub fn robust_likelihood(self, likelihood: RobustLikelihood) -> Self
pub fn robust_likelihood(self, likelihood: RobustLikelihood) -> Self
Set the robust likelihood
Sourcepub fn outlier_detection_threshold(self, threshold: f64) -> Self
pub fn outlier_detection_threshold(self, threshold: f64) -> Self
Set outlier detection threshold
Sourcepub fn max_iterations(self, max_iter: usize) -> Self
pub fn max_iterations(self, max_iter: usize) -> Self
Set maximum iterations for iterative fitting
Source§impl RobustGaussianProcessRegressor<Trained>
impl RobustGaussianProcessRegressor<Trained>
Sourcepub fn trained_state(&self) -> &Trained
pub fn trained_state(&self) -> &Trained
Access the trained state
Sourcepub fn outlier_indices(&self) -> &[usize]
pub fn outlier_indices(&self) -> &[usize]
Get detected outlier indices
Sourcepub fn outlier_weights(&self) -> &Array1<f64>
pub fn outlier_weights(&self) -> &Array1<f64>
Get outlier weights (low weights indicate outliers)
Sourcepub fn robustness_metrics(&self) -> &RobustnessMetrics
pub fn robustness_metrics(&self) -> &RobustnessMetrics
Get robustness metrics
Sourcepub fn predict_with_robust_uncertainty(
&self,
X: &Array2<f64>,
) -> SklResult<(Array1<f64>, Array1<f64>)>
pub fn predict_with_robust_uncertainty( &self, X: &Array2<f64>, ) -> SklResult<(Array1<f64>, Array1<f64>)>
Predict with robust uncertainty estimates
Sourcepub fn assess_contamination(&self) -> f64
pub fn assess_contamination(&self) -> f64
Assess the contamination level in training data
Sourcepub fn compute_influence_function(&self) -> Array1<f64>
pub fn compute_influence_function(&self) -> Array1<f64>
Compute influence function values for training points
Sourcepub fn robust_cross_validation(&self, folds: usize) -> SklResult<f64>
pub fn robust_cross_validation(&self, folds: usize) -> SklResult<f64>
Robust cross-validation score
Trait Implementations§
Source§impl<S: Clone> Clone for RobustGaussianProcessRegressor<S>
impl<S: Clone> Clone for RobustGaussianProcessRegressor<S>
Source§fn clone(&self) -> RobustGaussianProcessRegressor<S>
fn clone(&self) -> RobustGaussianProcessRegressor<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for RobustGaussianProcessRegressor<S>
impl<S: Debug> Debug for RobustGaussianProcessRegressor<S>
Source§impl Estimator for RobustGaussianProcessRegressor<Untrained>
impl Estimator for RobustGaussianProcessRegressor<Untrained>
Source§type Config = RobustGPConfig
type Config = RobustGPConfig
Configuration type for the estimator
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Estimator for RobustGaussianProcessRegressor<Trained>
impl Estimator for RobustGaussianProcessRegressor<Trained>
Source§type Config = RobustGPConfig
type Config = RobustGPConfig
Configuration type for the estimator
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for RobustGaussianProcessRegressor<Untrained>
impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for RobustGaussianProcessRegressor<Untrained>
Source§type Fitted = RobustGaussianProcessRegressor<Trained>
type Fitted = RobustGaussianProcessRegressor<Trained>
The fitted model type
Source§fn fit(self, X: &Array2<f64>, y: &Array1<f64>) -> SklResult<Self::Fitted>
fn fit(self, X: &Array2<f64>, y: &Array1<f64>) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for RobustGaussianProcessRegressor<Trained>
impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for RobustGaussianProcessRegressor<Trained>
Source§fn predict(&self, X: &Array2<f64>) -> SklResult<Array1<f64>>
fn predict(&self, X: &Array2<f64>) -> SklResult<Array1<f64>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<S> Freeze for RobustGaussianProcessRegressor<S>where
S: Freeze,
impl<S = Untrained> !RefUnwindSafe for RobustGaussianProcessRegressor<S>
impl<S> Send for RobustGaussianProcessRegressor<S>where
S: Send,
impl<S> Sync for RobustGaussianProcessRegressor<S>where
S: Sync,
impl<S> Unpin for RobustGaussianProcessRegressor<S>where
S: Unpin,
impl<S = Untrained> !UnwindSafe for RobustGaussianProcessRegressor<S>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features