VariationalSparseGaussianProcessRegressor

Struct VariationalSparseGaussianProcessRegressor 

Source
pub struct VariationalSparseGaussianProcessRegressor<S = Untrained> { /* private fields */ }
Expand description

let X = array![[0.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0]]; let y = array![0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0];

let kernel = RBF::new(2.0); let vsgpr = VariationalSparseGaussianProcessRegressor::new() .kernel(Box::new(kernel)) .n_inducing(3); let fitted = vsgpr.fit(&X.view(), &y.view()).unwrap(); let predictions = fitted.predict(&X.view()).unwrap();

Implementations§

Source§

impl VariationalSparseGaussianProcessRegressor<Untrained>

Source

pub fn new() -> Self

Create a new VariationalSparseGaussianProcessRegressor instance

Source

pub fn kernel(self, kernel: Box<dyn Kernel>) -> Self

Set the kernel function

Source

pub fn n_inducing(self, n_inducing: usize) -> Self

Set the number of inducing points

Source

pub fn inducing_init(self, inducing_init: InducingPointInit) -> Self

Set the inducing point initialization method

Source

pub fn learning_rate(self, learning_rate: f64) -> Self

Set the learning rate for optimization

Source

pub fn max_iter(self, max_iter: usize) -> Self

Set the maximum number of iterations

Source

pub fn batch_size(self, batch_size: Option<usize>) -> Self

Set the batch size for mini-batch optimization

Source

pub fn inducing_batch_size(self, inducing_batch_size: Option<usize>) -> Self

Set the inducing batch size for doubly stochastic optimization

Source

pub fn sigma_n(self, sigma_n: f64) -> Self

Set the noise standard deviation

Source

pub fn tol(self, tol: f64) -> Self

Set convergence tolerance

Source

pub fn verbose(self, verbose: bool) -> Self

Set verbosity

Source

pub fn random_state(self, random_state: Option<u64>) -> Self

Set the random state

Source

pub fn optimizer(self, optimizer: VariationalOptimizer) -> Self

Set the optimization method

Source

pub fn natural_gradient_damping(self, damping: f64) -> Self

Set the damping factor for natural gradients (only used when optimizer is NaturalGradients)

Source§

impl VariationalSparseGaussianProcessRegressor<VsgprTrained>

Source

pub fn predict_with_std( &self, X: &ArrayView2<'_, f64>, ) -> SklResult<(Array1<f64>, Array1<f64>)>

Predict with uncertainty estimates

Source

pub fn elbo(&self) -> f64

Get the evidence lower bound (ELBO)

Source

pub fn elbo_history(&self) -> &[f64]

Get the ELBO history during training

Source

pub fn inducing_points(&self) -> &Array2<f64>

Get the inducing points

Source

pub fn variational_mean(&self) -> &Array1<f64>

Get the variational mean

Source

pub fn variational_covariance(&self) -> &Array2<f64>

Get the variational covariance

Source

pub fn update( self, X_new: &ArrayView2<'_, f64>, y_new: &ArrayView1<'_, f64>, learning_rate: Option<f64>, n_iterations: Option<usize>, ) -> SklResult<Self>

Online update with new data for streaming/scalable learning

This method allows incrementally updating the variational parameters with new data points without retraining from scratch, making it suitable for streaming scenarios and very large datasets.

§Arguments
  • X_new - New input data points
  • y_new - New target values
  • learning_rate - Learning rate for the update (if None, uses model’s learning rate)
  • n_iterations - Number of update iterations (default: 10)
§Returns

Updated model with modified variational parameters

Source

pub fn recursive_update( self, X_new: &ArrayView2<'_, f64>, y_new: &ArrayView1<'_, f64>, forgetting_factor: Option<f64>, ) -> SklResult<Self>

Recursive Bayesian update for online GP learning

This method implements proper recursive Bayesian updates for Gaussian processes, maintaining the posterior mean and covariance through sequential updates without requiring full recomputation of the ELBO.

§Arguments
  • X_new - New input data (n_new x n_features)
  • y_new - New target values (n_new,)
  • forgetting_factor - Exponential forgetting factor (0 < λ ≤ 1)
§Returns

Updated model with recursively updated posterior

Source

pub fn sliding_window_update( self, X_new: &ArrayView2<'_, f64>, y_new: &ArrayView1<'_, f64>, window_size: usize, decay_rate: f64, ) -> SklResult<Self>

Sliding window update for streaming data

Maintains a sliding window of recent data points and uses exponential forgetting to down-weight older observations.

§Arguments
  • X_new - New input data
  • y_new - New target values
  • window_size - Maximum number of recent observations to maintain
  • decay_rate - Exponential decay rate for older observations
Source

pub fn adaptive_sparse_update( self, X_new: &ArrayView2<'_, f64>, y_new: &ArrayView1<'_, f64>, max_inducing: usize, quality_threshold: f64, removal_threshold: f64, ) -> SklResult<Self>

Adaptive sparse GP with dynamic inducing point management

This method adaptively adds/removes inducing points based on the approximation quality and computational budget, maintaining good approximation while controlling computational cost.

§Arguments
  • X_new - New input data
  • y_new - New target values
  • max_inducing - Maximum number of inducing points allowed
  • quality_threshold - Minimum approximation quality threshold (0.0-1.0)
  • removal_threshold - Threshold for removing redundant inducing points
§Returns

Updated model with adaptively adjusted inducing points

Trait Implementations§

Source§

impl<S: Clone> Clone for VariationalSparseGaussianProcessRegressor<S>

Source§

fn clone(&self) -> VariationalSparseGaussianProcessRegressor<S>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<S: Debug> Debug for VariationalSparseGaussianProcessRegressor<S>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for VariationalSparseGaussianProcessRegressor<Untrained>

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl Estimator for VariationalSparseGaussianProcessRegressor<Untrained>

Source§

type Config = GpcConfig

Configuration type for the estimator
Source§

type Error = SklearsError

Error type for the estimator
Source§

type Float = f64

The numeric type used by this estimator
Source§

fn config(&self) -> &Self::Config

Get estimator configuration
Source§

fn validate_config(&self) -> Result<(), SklearsError>

Validate estimator configuration with detailed error context
Source§

fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>

Check if estimator is compatible with given data dimensions
Source§

fn metadata(&self) -> EstimatorMetadata

Get estimator metadata
Source§

impl Estimator for VariationalSparseGaussianProcessRegressor<VsgprTrained>

Source§

type Config = GpcConfig

Configuration type for the estimator
Source§

type Error = SklearsError

Error type for the estimator
Source§

type Float = f64

The numeric type used by this estimator
Source§

fn config(&self) -> &Self::Config

Get estimator configuration
Source§

fn validate_config(&self) -> Result<(), SklearsError>

Validate estimator configuration with detailed error context
Source§

fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>

Check if estimator is compatible with given data dimensions
Source§

fn metadata(&self) -> EstimatorMetadata

Get estimator metadata
Source§

impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&f64>, Dim<[usize; 1]>>> for VariationalSparseGaussianProcessRegressor<Untrained>

Source§

type Fitted = VariationalSparseGaussianProcessRegressor<VsgprTrained>

The fitted model type
Source§

fn fit( self, X: &ArrayView2<'_, f64>, y: &ArrayView1<'_, f64>, ) -> SklResult<Self::Fitted>

Fit the model to the provided data with validation
Source§

fn fit_with_validation( self, x: &X, y: &Y, _x_val: Option<&X>, _y_val: Option<&Y>, ) -> Result<(Self::Fitted, FitMetrics), SklearsError>
where Self: Sized,

Fit with custom validation and early stopping
Source§

impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for VariationalSparseGaussianProcessRegressor<VsgprTrained>

Source§

fn predict(&self, X: &ArrayView2<'_, f64>) -> SklResult<Array1<f64>>

Make predictions on the provided data
Source§

fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>

Make predictions with confidence intervals

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> StableApi for T
where T: Estimator,

Source§

const STABLE_SINCE: &'static str = "0.1.0"

API version this type was stabilized in
Source§

const HAS_EXPERIMENTAL_FEATURES: bool = false

Whether this API has any experimental features
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V