pub struct MultiOutputGaussianProcessRegressor<S = Untrained> { /* private fields */ }Expand description
Multi-output Gaussian Process Regressor with Linear Model of Coregionalization (LMC)
The Linear Model of Coregionalization (LMC) is a framework for modeling multiple correlated outputs by expressing each output as a linear combination of independent latent Gaussian processes. This approach captures cross-correlations between outputs while maintaining computational efficiency.
For Q outputs and R latent GPs, the model is: f_q(x) = Σ_r A_{q,r} * u_r(x)
where:
- f_q(x) is the q-th output function
- u_r(x) are independent latent GPs with kernel k_r(x, x’)
- A is the Q×R mixing matrix that captures output correlations
§Examples
use sklears_gaussian_process::{MultiOutputGaussianProcessRegressor, RBF};
use sklears_core::traits::{Fit, Predict};
// SciRS2 Policy - Use scirs2-autograd for ndarray types and operations
use scirs2_core::ndarray::array;
let kernel = RBF::new(1.0);
let mogpr = MultiOutputGaussianProcessRegressor::new()
.n_outputs(2)
.n_latent(1)
.kernel(Box::new(kernel))
.alpha(1e-10);
let X = array![[1.0], [2.0], [3.0]];
let Y = array![[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]; // 3 samples, 2 outputs
let fitted = mogpr.fit(&X.view(), &Y.view()).unwrap();
let predictions = fitted.predict(&X.view()).unwrap();Implementations§
Source§impl MultiOutputGaussianProcessRegressor<Untrained>
impl MultiOutputGaussianProcessRegressor<Untrained>
Sourcepub fn mixing_matrix(self, mixing_matrix: Array2<f64>) -> Self
pub fn mixing_matrix(self, mixing_matrix: Array2<f64>) -> Self
Set a custom mixing matrix A (Q × R)
Source§impl MultiOutputGaussianProcessRegressor<MogprTrained>
impl MultiOutputGaussianProcessRegressor<MogprTrained>
Sourcepub fn trained_state(&self) -> &MogprTrained
pub fn trained_state(&self) -> &MogprTrained
Access the trained state
Sourcepub fn mixing_matrix(&self) -> &Array2<f64>
pub fn mixing_matrix(&self) -> &Array2<f64>
Get the learned mixing matrix
Sourcepub fn log_marginal_likelihood(&self) -> SklResult<f64>
pub fn log_marginal_likelihood(&self) -> SklResult<f64>
Get the log marginal likelihood for model selection
Trait Implementations§
Source§impl<S: Clone> Clone for MultiOutputGaussianProcessRegressor<S>
impl<S: Clone> Clone for MultiOutputGaussianProcessRegressor<S>
Source§fn clone(&self) -> MultiOutputGaussianProcessRegressor<S>
fn clone(&self) -> MultiOutputGaussianProcessRegressor<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for MultiOutputGaussianProcessRegressor<S>
impl<S: Debug> Debug for MultiOutputGaussianProcessRegressor<S>
Source§impl Estimator for MultiOutputGaussianProcessRegressor<Untrained>
impl Estimator for MultiOutputGaussianProcessRegressor<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, SklearsError> for MultiOutputGaussianProcessRegressor<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, SklearsError> for MultiOutputGaussianProcessRegressor<Untrained>
Source§type Fitted = MultiOutputGaussianProcessRegressor<MogprTrained>
type Fitted = MultiOutputGaussianProcessRegressor<MogprTrained>
The fitted model type
Source§fn fit(
self,
X: &ArrayView2<'_, f64>,
Y: &ArrayView2<'_, f64>,
) -> Result<Self::Fitted, SklearsError>
fn fit( self, X: &ArrayView2<'_, f64>, Y: &ArrayView2<'_, f64>, ) -> Result<Self::Fitted, SklearsError>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for MultiOutputGaussianProcessRegressor<MogprTrained>
impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for MultiOutputGaussianProcessRegressor<MogprTrained>
Source§fn predict(&self, X: &ArrayView2<'_, f64>) -> Result<Array2<f64>, SklearsError>
fn predict(&self, X: &ArrayView2<'_, f64>) -> Result<Array2<f64>, SklearsError>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<S> Freeze for MultiOutputGaussianProcessRegressor<S>where
S: Freeze,
impl<S = Untrained> !RefUnwindSafe for MultiOutputGaussianProcessRegressor<S>
impl<S> Send for MultiOutputGaussianProcessRegressor<S>where
S: Send,
impl<S> Sync for MultiOutputGaussianProcessRegressor<S>where
S: Sync,
impl<S> Unpin for MultiOutputGaussianProcessRegressor<S>where
S: Unpin,
impl<S = Untrained> !UnwindSafe for MultiOutputGaussianProcessRegressor<S>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features