MultiOutputGaussianProcessRegressor

Struct MultiOutputGaussianProcessRegressor 

Source
pub struct MultiOutputGaussianProcessRegressor<S = Untrained> { /* private fields */ }
Expand description

Multi-output Gaussian Process Regressor with Linear Model of Coregionalization (LMC)

The Linear Model of Coregionalization (LMC) is a framework for modeling multiple correlated outputs by expressing each output as a linear combination of independent latent Gaussian processes. This approach captures cross-correlations between outputs while maintaining computational efficiency.

For Q outputs and R latent GPs, the model is: f_q(x) = Σ_r A_{q,r} * u_r(x)

where:

  • f_q(x) is the q-th output function
  • u_r(x) are independent latent GPs with kernel k_r(x, x’)
  • A is the Q×R mixing matrix that captures output correlations

§Examples

use sklears_gaussian_process::{MultiOutputGaussianProcessRegressor, RBF};
use sklears_core::traits::{Fit, Predict};
// SciRS2 Policy - Use scirs2-autograd for ndarray types and operations
use scirs2_core::ndarray::array;

let kernel = RBF::new(1.0);
let mogpr = MultiOutputGaussianProcessRegressor::new()
    .n_outputs(2)
    .n_latent(1)
    .kernel(Box::new(kernel))
    .alpha(1e-10);

let X = array![[1.0], [2.0], [3.0]];
let Y = array![[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]; // 3 samples, 2 outputs

let fitted = mogpr.fit(&X.view(), &Y.view()).unwrap();
let predictions = fitted.predict(&X.view()).unwrap();

Implementations§

Source§

impl MultiOutputGaussianProcessRegressor<Untrained>

Source

pub fn new() -> Self

Create a new MultiOutputGaussianProcessRegressor instance

Source

pub fn kernel(self, kernel: Box<dyn Kernel>) -> Self

Set the kernel function

Source

pub fn alpha(self, alpha: f64) -> Self

Set the regularization parameter

Source

pub fn n_outputs(self, n_outputs: usize) -> Self

Set the number of outputs

Source

pub fn n_latent(self, n_latent: usize) -> Self

Set the number of latent GPs

Source

pub fn mixing_matrix(self, mixing_matrix: Array2<f64>) -> Self

Set a custom mixing matrix A (Q × R)

Source§

impl MultiOutputGaussianProcessRegressor<MogprTrained>

Source

pub fn trained_state(&self) -> &MogprTrained

Access the trained state

Source

pub fn mixing_matrix(&self) -> &Array2<f64>

Get the learned mixing matrix

Source

pub fn log_marginal_likelihood(&self) -> SklResult<f64>

Get the log marginal likelihood for model selection

Trait Implementations§

Source§

impl<S: Clone> Clone for MultiOutputGaussianProcessRegressor<S>

Source§

fn clone(&self) -> MultiOutputGaussianProcessRegressor<S>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<S: Debug> Debug for MultiOutputGaussianProcessRegressor<S>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for MultiOutputGaussianProcessRegressor<Untrained>

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl Estimator for MultiOutputGaussianProcessRegressor<Untrained>

Source§

type Config = ()

Configuration type for the estimator
Source§

type Error = SklearsError

Error type for the estimator
Source§

type Float = f64

The numeric type used by this estimator
Source§

fn config(&self) -> &Self::Config

Get estimator configuration
Source§

fn validate_config(&self) -> Result<(), SklearsError>

Validate estimator configuration with detailed error context
Source§

fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>

Check if estimator is compatible with given data dimensions
Source§

fn metadata(&self) -> EstimatorMetadata

Get estimator metadata
Source§

impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, SklearsError> for MultiOutputGaussianProcessRegressor<Untrained>

Source§

type Fitted = MultiOutputGaussianProcessRegressor<MogprTrained>

The fitted model type
Source§

fn fit( self, X: &ArrayView2<'_, f64>, Y: &ArrayView2<'_, f64>, ) -> Result<Self::Fitted, SklearsError>

Fit the model to the provided data with validation
Source§

fn fit_with_validation( self, x: &X, y: &Y, _x_val: Option<&X>, _y_val: Option<&Y>, ) -> Result<(Self::Fitted, FitMetrics), SklearsError>
where Self: Sized,

Fit with custom validation and early stopping
Source§

impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for MultiOutputGaussianProcessRegressor<MogprTrained>

Source§

fn predict(&self, X: &ArrayView2<'_, f64>) -> Result<Array2<f64>, SklearsError>

Make predictions on the provided data
Source§

fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>

Make predictions with confidence intervals

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> StableApi for T
where T: Estimator,

Source§

const STABLE_SINCE: &'static str = "0.1.0"

API version this type was stabilized in
Source§

const HAS_EXPERIMENTAL_FEATURES: bool = false

Whether this API has any experimental features
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V