pub struct LinearModelCoregionalization<S = Untrained> { /* private fields */ }Expand description
Linear Model of Coregionalization for multi-output Gaussian Process regression
The LMC models multiple outputs using linear combinations of independent latent functions, each with its own kernel. This allows the model to capture correlations between outputs while maintaining computational efficiency.
Implementations§
Source§impl LinearModelCoregionalization<Untrained>
impl LinearModelCoregionalization<Untrained>
Sourcepub fn kernels(self, kernels: Vec<Box<dyn Kernel>>) -> Self
pub fn kernels(self, kernels: Vec<Box<dyn Kernel>>) -> Self
Set the kernel functions for each latent process
Sourcepub fn mixing_matrices(self, mixing_matrices: Vec<Array2<f64>>) -> Self
pub fn mixing_matrices(self, mixing_matrices: Vec<Array2<f64>>) -> Self
Set the mixing matrices for each kernel
Sourcepub fn optimize_mixing(self, optimize_mixing: bool) -> Self
pub fn optimize_mixing(self, optimize_mixing: bool) -> Self
Set whether to optimize mixing matrices during training
Source§impl LinearModelCoregionalization<LmcTrained>
impl LinearModelCoregionalization<LmcTrained>
Sourcepub fn trained_state(&self) -> &LmcTrained
pub fn trained_state(&self) -> &LmcTrained
Access the trained state
Sourcepub fn mixing_matrices(&self) -> &[Array2<f64>] ⓘ
pub fn mixing_matrices(&self) -> &[Array2<f64>] ⓘ
Get the learned mixing matrices
Sourcepub fn log_marginal_likelihood(&self) -> f64
pub fn log_marginal_likelihood(&self) -> f64
Get the log marginal likelihood for model selection
Sourcepub fn latent_contributions(
&self,
X: &ArrayView2<'_, f64>,
) -> SklResult<Vec<Array2<f64>>>
pub fn latent_contributions( &self, X: &ArrayView2<'_, f64>, ) -> SklResult<Vec<Array2<f64>>>
Get the contribution of each latent function to the predictions
Trait Implementations§
Source§impl<S: Clone> Clone for LinearModelCoregionalization<S>
impl<S: Clone> Clone for LinearModelCoregionalization<S>
Source§fn clone(&self) -> LinearModelCoregionalization<S>
fn clone(&self) -> LinearModelCoregionalization<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for LinearModelCoregionalization<S>
impl<S: Debug> Debug for LinearModelCoregionalization<S>
Source§impl Estimator for LinearModelCoregionalization<Untrained>
impl Estimator for LinearModelCoregionalization<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Estimator for LinearModelCoregionalization<LmcTrained>
impl Estimator for LinearModelCoregionalization<LmcTrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>> for LinearModelCoregionalization<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>> for LinearModelCoregionalization<Untrained>
Source§type Fitted = LinearModelCoregionalization<LmcTrained>
type Fitted = LinearModelCoregionalization<LmcTrained>
The fitted model type
Source§fn fit(
self,
X: &ArrayView2<'_, f64>,
Y: &ArrayView2<'_, f64>,
) -> SklResult<Self::Fitted>
fn fit( self, X: &ArrayView2<'_, f64>, Y: &ArrayView2<'_, f64>, ) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for LinearModelCoregionalization<LmcTrained>
impl Predict<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>> for LinearModelCoregionalization<LmcTrained>
Source§fn predict(&self, X: &ArrayView2<'_, f64>) -> Result<Array2<f64>, SklearsError>
fn predict(&self, X: &ArrayView2<'_, f64>) -> Result<Array2<f64>, SklearsError>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<S> Freeze for LinearModelCoregionalization<S>where
S: Freeze,
impl<S = Untrained> !RefUnwindSafe for LinearModelCoregionalization<S>
impl<S> Send for LinearModelCoregionalization<S>where
S: Send,
impl<S> Sync for LinearModelCoregionalization<S>where
S: Sync,
impl<S> Unpin for LinearModelCoregionalization<S>where
S: Unpin,
impl<S = Untrained> !UnwindSafe for LinearModelCoregionalization<S>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features