pub struct GaussianProcessRegressor<S = Untrained> { /* private fields */ }Expand description
let X = array![[1.0], [2.0], [3.0], [4.0]]; let y = array![1.0, 4.0, 9.0, 16.0];
let kernel = RBF::new(1.0); let gpr = GaussianProcessRegressor::new().kernel(Box::new(kernel)); let fitted = gpr.fit(&X, &y).unwrap(); let (mean, std) = fitted.predict_with_std(&X).unwrap();
Implementations§
Source§impl GaussianProcessRegressor<Untrained>
impl GaussianProcessRegressor<Untrained>
Sourcepub fn n_restarts_optimizer(self, n_restarts: usize) -> Self
pub fn n_restarts_optimizer(self, n_restarts: usize) -> Self
Set the number of optimizer restarts
Sourcepub fn normalize_y(self, normalize_y: bool) -> Self
pub fn normalize_y(self, normalize_y: bool) -> Self
Set whether to normalize the target values
Sourcepub fn copy_x_train(self, copy_x_train: bool) -> Self
pub fn copy_x_train(self, copy_x_train: bool) -> Self
Set whether to copy X during training
Sourcepub fn random_state(self, random_state: Option<u64>) -> Self
pub fn random_state(self, random_state: Option<u64>) -> Self
Set the random state
Trait Implementations§
Source§impl<S: Clone> Clone for GaussianProcessRegressor<S>
impl<S: Clone> Clone for GaussianProcessRegressor<S>
Source§fn clone(&self) -> GaussianProcessRegressor<S>
fn clone(&self) -> GaussianProcessRegressor<S>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<S: Debug> Debug for GaussianProcessRegressor<S>
impl<S: Debug> Debug for GaussianProcessRegressor<S>
Source§impl Default for GaussianProcessRegressor<Untrained>
impl Default for GaussianProcessRegressor<Untrained>
Source§impl Estimator for GaussianProcessRegressor<Untrained>
impl Estimator for GaussianProcessRegressor<Untrained>
Source§type Config = GaussianProcessRegressorConfig
type Config = GaussianProcessRegressorConfig
Configuration type for the estimator
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Estimator for GaussianProcessRegressor<GprTrained>
impl Estimator for GaussianProcessRegressor<GprTrained>
Source§type Config = GaussianProcessRegressorConfig
type Config = GaussianProcessRegressorConfig
Configuration type for the estimator
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for GaussianProcessRegressor<Untrained>
impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for GaussianProcessRegressor<Untrained>
Source§type Fitted = GaussianProcessRegressor<GprTrained>
type Fitted = GaussianProcessRegressor<GprTrained>
The fitted model type
Source§fn fit(self, X: &Array2<f64>, y: &Array1<f64>) -> SklResult<Self::Fitted>
fn fit(self, X: &Array2<f64>, y: &Array1<f64>) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for GaussianProcessRegressor<GprTrained>
impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for GaussianProcessRegressor<GprTrained>
Source§fn predict(&self, X: &Array2<f64>) -> SklResult<Array1<f64>>
fn predict(&self, X: &Array2<f64>) -> SklResult<Array1<f64>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<S> Freeze for GaussianProcessRegressor<S>where
S: Freeze,
impl<S = Untrained> !RefUnwindSafe for GaussianProcessRegressor<S>
impl<S> Send for GaussianProcessRegressor<S>where
S: Send,
impl<S> Sync for GaussianProcessRegressor<S>where
S: Sync,
impl<S> Unpin for GaussianProcessRegressor<S>where
S: Unpin,
impl<S = Untrained> !UnwindSafe for GaussianProcessRegressor<S>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features