pub struct MultiLabelEnsembleClassifier<State = Untrained> { /* private fields */ }Expand description
Multi-label ensemble classifier
Implementations§
Source§impl MultiLabelEnsembleClassifier<Untrained>
impl MultiLabelEnsembleClassifier<Untrained>
Sourcepub fn new(config: MultiLabelEnsembleConfig) -> Self
pub fn new(config: MultiLabelEnsembleConfig) -> Self
Create a new multi-label ensemble classifier
Sourcepub fn binary_relevance() -> Self
pub fn binary_relevance() -> Self
Create a new multi-label ensemble classifier with binary relevance
Sourcepub fn label_powerset() -> Self
pub fn label_powerset() -> Self
Create a new multi-label ensemble classifier with label powerset
Sourcepub fn classifier_chains() -> Self
pub fn classifier_chains() -> Self
Create a new multi-label ensemble classifier with classifier chains
Sourcepub fn ensemble_classifier_chains() -> Self
pub fn ensemble_classifier_chains() -> Self
Create a new multi-label ensemble classifier with ensemble of classifier chains
Sourcepub fn n_estimators(self, n_estimators: usize) -> Self
pub fn n_estimators(self, n_estimators: usize) -> Self
Builder method to configure the number of estimators
Sourcepub fn aggregation_method(self, method: MultiLabelAggregationMethod) -> Self
pub fn aggregation_method(self, method: MultiLabelAggregationMethod) -> Self
Builder method to configure the aggregation method
Sourcepub fn correlation_method(self, method: LabelCorrelationMethod) -> Self
pub fn correlation_method(self, method: LabelCorrelationMethod) -> Self
Builder method to configure the correlation method
Sourcepub fn random_state(self, seed: u64) -> Self
pub fn random_state(self, seed: u64) -> Self
Builder method to configure random state
Sourcepub fn prune_labelsets(self, prune: bool) -> Self
pub fn prune_labelsets(self, prune: bool) -> Self
Builder method to configure label powerset pruning
Source§impl MultiLabelEnsembleClassifier<Trained>
impl MultiLabelEnsembleClassifier<Trained>
Sourcepub fn label_correlations(&self) -> &Array2<f64>
pub fn label_correlations(&self) -> &Array2<f64>
Get label correlations
Sourcepub fn transformation_strategy(&self) -> &LabelTransformationStrategy
pub fn transformation_strategy(&self) -> &LabelTransformationStrategy
Get the transformation strategy used
Sourcepub fn predict_binary(&self, X: &Array2<f64>) -> SklResult<Array2<usize>>
pub fn predict_binary(&self, X: &Array2<f64>) -> SklResult<Array2<usize>>
Predict binary labels only
Trait Implementations§
Source§impl Estimator for MultiLabelEnsembleClassifier<Untrained>
impl Estimator for MultiLabelEnsembleClassifier<Untrained>
Source§type Config = MultiLabelEnsembleConfig
type Config = MultiLabelEnsembleConfig
Configuration type for the estimator
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<usize>, Dim<[usize; 2]>>> for MultiLabelEnsembleClassifier<Untrained>
impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<usize>, Dim<[usize; 2]>>> for MultiLabelEnsembleClassifier<Untrained>
Source§type Fitted = MultiLabelEnsembleClassifier<Trained>
type Fitted = MultiLabelEnsembleClassifier<Trained>
The fitted model type
Source§fn fit(self, X: &Array2<f64>, y: &Array2<usize>) -> SklResult<Self::Fitted>
fn fit(self, X: &Array2<f64>, y: &Array2<usize>) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, MultiLabelPredictionResults> for MultiLabelEnsembleClassifier<Trained>
impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, MultiLabelPredictionResults> for MultiLabelEnsembleClassifier<Trained>
Source§fn predict(&self, X: &Array2<f64>) -> SklResult<MultiLabelPredictionResults>
fn predict(&self, X: &Array2<f64>) -> SklResult<MultiLabelPredictionResults>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<State> Freeze for MultiLabelEnsembleClassifier<State>
impl<State> RefUnwindSafe for MultiLabelEnsembleClassifier<State>where
State: RefUnwindSafe,
impl<State> Send for MultiLabelEnsembleClassifier<State>where
State: Send,
impl<State> Sync for MultiLabelEnsembleClassifier<State>where
State: Sync,
impl<State> Unpin for MultiLabelEnsembleClassifier<State>where
State: Unpin,
impl<State> UnwindSafe for MultiLabelEnsembleClassifier<State>where
State: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features