BaggingClassifier

Struct BaggingClassifier 

Source
pub struct BaggingClassifier<State = Untrained> { /* private fields */ }
Expand description

Enhanced Bagging classifier with OOB estimation and feature bagging

Implementations§

Source§

impl BaggingClassifier<Untrained>

Source

pub fn new() -> Self

Create a new bagging classifier

Source

pub fn n_estimators(self, n_estimators: usize) -> Self

Set the number of estimators

Source

pub fn max_samples(self, max_samples: Option<usize>) -> Self

Set the maximum number of samples per estimator

Source

pub fn max_features(self, max_features: Option<usize>) -> Self

Set the maximum number of features per estimator

Source

pub fn bootstrap(self, bootstrap: bool) -> Self

Set whether to use bootstrap sampling

Source

pub fn bootstrap_features(self, bootstrap_features: bool) -> Self

Set whether to use bootstrap feature sampling

Source

pub fn random_state(self, random_state: u64) -> Self

Set the random state

Source

pub fn oob_score(self, oob_score: bool) -> Self

Set whether to calculate out-of-bag score

Source

pub fn max_depth(self, max_depth: Option<usize>) -> Self

Set maximum depth for base estimators

Source

pub fn min_samples_split(self, min_samples_split: usize) -> Self

Set minimum samples to split

Source

pub fn min_samples_leaf(self, min_samples_leaf: usize) -> Self

Set minimum samples at leaf

Source

pub fn confidence_level(self, confidence_level: Float) -> Self

Set confidence level for bootstrap intervals

Source

pub fn n_jobs(self, n_jobs: Option<i32>) -> Self

Set number of parallel jobs for training (None for automatic detection)

Source

pub fn parallel(self) -> Self

Enable parallel training with automatic job detection

Source

pub fn extra_randomized(self, extra_randomized: bool) -> Self

Enable extra randomization (Extremely Randomized Trees)

Source

pub fn extremely_randomized(self) -> Self

Enable extra randomization (convenient shorthand)

Source§

impl BaggingClassifier<Trained>

Source

pub fn estimators(&self) -> &[DecisionTreeClassifier<Trained>]

Get the fitted base estimators

Source

pub fn estimators_features(&self) -> &[Vec<usize>]

Get the feature indices used by each estimator

Source

pub fn estimators_samples(&self) -> &[Vec<usize>]

Get the sample indices used by each estimator

Source

pub fn oob_score(&self) -> Option<Float>

Get the out-of-bag score if calculated

Source

pub fn classes(&self) -> &Array1<Int>

Get the classes

Source

pub fn n_classes(&self) -> usize

Get the number of classes

Source

pub fn n_features_in(&self) -> usize

Get the number of input features

Source

pub fn feature_importances(&self) -> &Array1<Float>

Get feature importances

Source

pub fn predict_with_confidence( &self, x: &Array2<Float>, ) -> Result<(Array1<Int>, Array2<Float>)>

Calculate bootstrap confidence intervals for predictions

Trait Implementations§

Source§

impl Default for BaggingClassifier<Untrained>

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl<State> Estimator<State> for BaggingClassifier<State>

Source§

type Config = BaggingConfig

Configuration type for the estimator
Source§

type Error = SklearsError

Error type for the estimator
Source§

type Float = f64

The numeric type used by this estimator
Source§

fn config(&self) -> &Self::Config

Get estimator configuration
Source§

fn validate_config(&self) -> Result<()>

Validate estimator configuration with detailed error context
Source§

fn metadata(&self) -> EstimatorMetadata

Get estimator metadata
Source§

fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>

Check if estimator is compatible with given data dimensions
Source§

impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for BaggingClassifier<Untrained>

Source§

type Fitted = BaggingClassifier<Trained>

The fitted model type
Source§

fn fit(self, x: &Array2<Float>, y: &Array1<Int>) -> Result<Self::Fitted>

Fit the model to the provided data with validation
Source§

fn fit_with_validation( self, x: &X, y: &Y, _x_val: Option<&X>, _y_val: Option<&Y>, ) -> Result<(Self::Fitted, FitMetrics), SklearsError>
where Self: Sized,

Fit with custom validation and early stopping
Source§

impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for BaggingClassifier<Trained>

Source§

fn predict(&self, x: &Array2<Float>) -> Result<Array1<Int>>

Make predictions on the provided data
Source§

fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>

Make predictions with confidence intervals

Auto Trait Implementations§

§

impl<State> Freeze for BaggingClassifier<State>

§

impl<State> RefUnwindSafe for BaggingClassifier<State>
where State: RefUnwindSafe,

§

impl<State> Send for BaggingClassifier<State>
where State: Send,

§

impl<State> Sync for BaggingClassifier<State>
where State: Sync,

§

impl<State> Unpin for BaggingClassifier<State>
where State: Unpin,

§

impl<State> UnwindSafe for BaggingClassifier<State>
where State: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> StableApi for T
where T: Estimator,

Source§

const STABLE_SINCE: &'static str = "0.1.0"

API version this type was stabilized in
Source§

const HAS_EXPERIMENTAL_FEATURES: bool = false

Whether this API has any experimental features
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V