pub struct BaggingClassifier<State = Untrained> { /* private fields */ }Expand description
Enhanced Bagging classifier with OOB estimation and feature bagging
Implementations§
Source§impl BaggingClassifier<Untrained>
impl BaggingClassifier<Untrained>
Sourcepub fn n_estimators(self, n_estimators: usize) -> Self
pub fn n_estimators(self, n_estimators: usize) -> Self
Set the number of estimators
Sourcepub fn max_samples(self, max_samples: Option<usize>) -> Self
pub fn max_samples(self, max_samples: Option<usize>) -> Self
Set the maximum number of samples per estimator
Sourcepub fn max_features(self, max_features: Option<usize>) -> Self
pub fn max_features(self, max_features: Option<usize>) -> Self
Set the maximum number of features per estimator
Sourcepub fn bootstrap_features(self, bootstrap_features: bool) -> Self
pub fn bootstrap_features(self, bootstrap_features: bool) -> Self
Set whether to use bootstrap feature sampling
Sourcepub fn random_state(self, random_state: u64) -> Self
pub fn random_state(self, random_state: u64) -> Self
Set the random state
Sourcepub fn min_samples_split(self, min_samples_split: usize) -> Self
pub fn min_samples_split(self, min_samples_split: usize) -> Self
Set minimum samples to split
Sourcepub fn min_samples_leaf(self, min_samples_leaf: usize) -> Self
pub fn min_samples_leaf(self, min_samples_leaf: usize) -> Self
Set minimum samples at leaf
Sourcepub fn confidence_level(self, confidence_level: Float) -> Self
pub fn confidence_level(self, confidence_level: Float) -> Self
Set confidence level for bootstrap intervals
Sourcepub fn n_jobs(self, n_jobs: Option<i32>) -> Self
pub fn n_jobs(self, n_jobs: Option<i32>) -> Self
Set number of parallel jobs for training (None for automatic detection)
Sourcepub fn extra_randomized(self, extra_randomized: bool) -> Self
pub fn extra_randomized(self, extra_randomized: bool) -> Self
Enable extra randomization (Extremely Randomized Trees)
Sourcepub fn extremely_randomized(self) -> Self
pub fn extremely_randomized(self) -> Self
Enable extra randomization (convenient shorthand)
Source§impl BaggingClassifier<Trained>
impl BaggingClassifier<Trained>
Sourcepub fn estimators(&self) -> &[DecisionTreeClassifier<Trained>]
pub fn estimators(&self) -> &[DecisionTreeClassifier<Trained>]
Get the fitted base estimators
Sourcepub fn estimators_features(&self) -> &[Vec<usize>]
pub fn estimators_features(&self) -> &[Vec<usize>]
Get the feature indices used by each estimator
Sourcepub fn estimators_samples(&self) -> &[Vec<usize>]
pub fn estimators_samples(&self) -> &[Vec<usize>]
Get the sample indices used by each estimator
Sourcepub fn n_features_in(&self) -> usize
pub fn n_features_in(&self) -> usize
Get the number of input features
Sourcepub fn feature_importances(&self) -> &Array1<Float>
pub fn feature_importances(&self) -> &Array1<Float>
Get feature importances
Trait Implementations§
Source§impl Default for BaggingClassifier<Untrained>
impl Default for BaggingClassifier<Untrained>
Source§impl<State> Estimator<State> for BaggingClassifier<State>
impl<State> Estimator<State> for BaggingClassifier<State>
Source§type Config = BaggingConfig
type Config = BaggingConfig
Configuration type for the estimator
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<()>
fn validate_config(&self) -> Result<()>
Validate estimator configuration with detailed error context
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for BaggingClassifier<Untrained>
impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for BaggingClassifier<Untrained>
Source§type Fitted = BaggingClassifier<Trained>
type Fitted = BaggingClassifier<Trained>
The fitted model type
Source§fn fit(self, x: &Array2<Float>, y: &Array1<Int>) -> Result<Self::Fitted>
fn fit(self, x: &Array2<Float>, y: &Array1<Int>) -> Result<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for BaggingClassifier<Trained>
impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<i32>, Dim<[usize; 1]>>> for BaggingClassifier<Trained>
Source§fn predict(&self, x: &Array2<Float>) -> Result<Array1<Int>>
fn predict(&self, x: &Array2<Float>) -> Result<Array1<Int>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<State> Freeze for BaggingClassifier<State>
impl<State> RefUnwindSafe for BaggingClassifier<State>where
State: RefUnwindSafe,
impl<State> Send for BaggingClassifier<State>where
State: Send,
impl<State> Sync for BaggingClassifier<State>where
State: Sync,
impl<State> Unpin for BaggingClassifier<State>where
State: Unpin,
impl<State> UnwindSafe for BaggingClassifier<State>where
State: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features