pub struct MemoryEfficientEnsemble<State = Untrained> { /* private fields */ }Expand description
Memory-efficient ensemble that uses incremental learning and streaming
Implementations§
Source§impl<State> MemoryEfficientEnsemble<State>
impl<State> MemoryEfficientEnsemble<State>
Sourcepub fn memory_usage(&self) -> usize
pub fn memory_usage(&self) -> usize
Get current memory usage estimate in bytes
Sourcepub fn active_model_count(&self) -> usize
pub fn active_model_count(&self) -> usize
Get number of active models in memory
Sourcepub fn total_models_created(&self) -> usize
pub fn total_models_created(&self) -> usize
Get total number of models created
Sourcepub fn needs_cleanup(&self) -> bool
pub fn needs_cleanup(&self) -> bool
Check if memory cleanup is needed
Source§impl MemoryEfficientEnsemble<Untrained>
impl MemoryEfficientEnsemble<Untrained>
Sourcepub fn max_estimators_in_memory(self, max_estimators: usize) -> Self
pub fn max_estimators_in_memory(self, max_estimators: usize) -> Self
Set maximum number of estimators to keep in memory
Sourcepub fn batch_size(self, batch_size: usize) -> Self
pub fn batch_size(self, batch_size: usize) -> Self
Set batch size for incremental learning
Sourcepub fn window_size(self, window_size: Option<usize>) -> Self
pub fn window_size(self, window_size: Option<usize>) -> Self
Set window size for streaming data
Sourcepub fn lazy_evaluation(self, enabled: bool) -> Self
pub fn lazy_evaluation(self, enabled: bool) -> Self
Enable lazy evaluation
Sourcepub fn memory_threshold_mb(self, threshold: usize) -> Self
pub fn memory_threshold_mb(self, threshold: usize) -> Self
Set memory threshold in MB
Sourcepub fn compress_models(self, enabled: bool) -> Self
pub fn compress_models(self, enabled: bool) -> Self
Enable model compression
Sourcepub fn use_disk_cache(self, enabled: bool, cache_dir: Option<String>) -> Self
pub fn use_disk_cache(self, enabled: bool, cache_dir: Option<String>) -> Self
Enable disk caching
Sourcepub fn learning_rate_decay(self, decay: Float) -> Self
pub fn learning_rate_decay(self, decay: Float) -> Self
Set learning rate decay
Sourcepub fn forgetting_factor(self, factor: Float) -> Self
pub fn forgetting_factor(self, factor: Float) -> Self
Set forgetting factor for streaming
Sourcepub fn adaptive_batch_size(self, enabled: bool) -> Self
pub fn adaptive_batch_size(self, enabled: bool) -> Self
Enable adaptive batch sizing
Sourcepub fn for_large_datasets() -> Self
pub fn for_large_datasets() -> Self
Create a memory-efficient ensemble with optimal settings for large datasets
Sourcepub fn for_streaming() -> Self
pub fn for_streaming() -> Self
Create a streaming ensemble with optimal settings
Trait Implementations§
Source§impl Default for MemoryEfficientEnsemble<Untrained>
impl Default for MemoryEfficientEnsemble<Untrained>
Source§impl Estimator for MemoryEfficientEnsemble<Untrained>
impl Estimator for MemoryEfficientEnsemble<Untrained>
Source§type Config = MemoryEfficientConfig
type Config = MemoryEfficientConfig
Configuration type for the estimator
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for MemoryEfficientEnsemble<Untrained>
impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for MemoryEfficientEnsemble<Untrained>
Source§type Fitted = MemoryEfficientEnsemble<Trained>
type Fitted = MemoryEfficientEnsemble<Trained>
The fitted model type
Source§fn fit(self, x: &Array2<Float>, y: &Array1<Float>) -> Result<Self::Fitted>
fn fit(self, x: &Array2<Float>, y: &Array1<Float>) -> Result<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Source§impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for MemoryEfficientEnsemble<Trained>
impl Predict<ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>>, ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>>> for MemoryEfficientEnsemble<Trained>
Source§fn predict(&self, x: &Array2<Float>) -> Result<Array1<Float>>
fn predict(&self, x: &Array2<Float>) -> Result<Array1<Float>>
Make predictions on the provided data
Source§fn predict_with_uncertainty(
&self,
x: &X,
) -> Result<(Output, UncertaintyMeasure), SklearsError>
fn predict_with_uncertainty( &self, x: &X, ) -> Result<(Output, UncertaintyMeasure), SklearsError>
Make predictions with confidence intervals
Auto Trait Implementations§
impl<State> Freeze for MemoryEfficientEnsemble<State>
impl<State = Untrained> !RefUnwindSafe for MemoryEfficientEnsemble<State>
impl<State> Send for MemoryEfficientEnsemble<State>where
State: Send,
impl<State> Sync for MemoryEfficientEnsemble<State>where
State: Sync,
impl<State> Unpin for MemoryEfficientEnsemble<State>where
State: Unpin,
impl<State = Untrained> !UnwindSafe for MemoryEfficientEnsemble<State>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features