pub struct SparseTensorDecomposition<State = Untrained> {
pub n_factors: usize,
pub max_iter: usize,
pub tol: Float,
pub sparsity_penalty: Float,
pub regularization: Float,
pub sparsity_threshold: Float,
/* private fields */
}Expand description
Sparse Tensor Decomposition
Decomposes a sparse tensor using CP decomposition with sparsity constraints. Handles tensors with many zero entries efficiently and can enforce sparsity in the factor matrices through L1 regularization.
§Examples
use scirs2_core::ndarray::Array3;
use sklears_cross_decomposition::SparseTensorDecomposition;
use sklears_core::traits::Fit;
let tensor = Array3::zeros((20, 15, 10));
let sparse_decomp = SparseTensorDecomposition::new(5).sparsity_penalty(0.1);
let fitted = sparse_decomp.fit(&tensor, &()).unwrap();Fields§
§n_factors: usizeNumber of factors
max_iter: usizeMaximum number of iterations
tol: FloatConvergence tolerance
sparsity_penalty: FloatL1 sparsity penalty
regularization: FloatL2 regularization
sparsity_threshold: FloatSparsity threshold (values below this are set to zero)
Implementations§
Source§impl SparseTensorDecomposition<Untrained>
impl SparseTensorDecomposition<Untrained>
Sourcepub fn sparsity_penalty(self, penalty: Float) -> Self
pub fn sparsity_penalty(self, penalty: Float) -> Self
Set sparsity penalty (L1 regularization)
Sourcepub fn regularization(self, regularization: Float) -> Self
pub fn regularization(self, regularization: Float) -> Self
Set L2 regularization
Sourcepub fn sparsity_threshold(self, threshold: Float) -> Self
pub fn sparsity_threshold(self, threshold: Float) -> Self
Set sparsity threshold
Source§impl SparseTensorDecomposition<Trained>
impl SparseTensorDecomposition<Trained>
Sourcepub fn sparsity_levels(&self) -> &Array1<Float>
pub fn sparsity_levels(&self) -> &Array1<Float>
Get the sparsity levels for each mode
Sourcepub fn reconstruction_error(&self) -> Float
pub fn reconstruction_error(&self) -> Float
Get the reconstruction error
Trait Implementations§
Source§impl<State: Clone> Clone for SparseTensorDecomposition<State>
impl<State: Clone> Clone for SparseTensorDecomposition<State>
Source§fn clone(&self) -> SparseTensorDecomposition<State>
fn clone(&self) -> SparseTensorDecomposition<State>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<State: Debug> Debug for SparseTensorDecomposition<State>
impl<State: Debug> Debug for SparseTensorDecomposition<State>
Source§impl Estimator for SparseTensorDecomposition<Untrained>
impl Estimator for SparseTensorDecomposition<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 3]>>, ()> for SparseTensorDecomposition<Untrained>
impl Fit<ArrayBase<OwnedRepr<f64>, Dim<[usize; 3]>>, ()> for SparseTensorDecomposition<Untrained>
Source§type Fitted = SparseTensorDecomposition<Trained>
type Fitted = SparseTensorDecomposition<Trained>
The fitted model type
Source§fn fit(self, tensor: &Array3<Float>, _target: &()) -> Result<Self::Fitted>
fn fit(self, tensor: &Array3<Float>, _target: &()) -> Result<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Auto Trait Implementations§
impl<State> Freeze for SparseTensorDecomposition<State>
impl<State> RefUnwindSafe for SparseTensorDecomposition<State>where
State: RefUnwindSafe,
impl<State> Send for SparseTensorDecomposition<State>where
State: Send,
impl<State> Sync for SparseTensorDecomposition<State>where
State: Sync,
impl<State> Unpin for SparseTensorDecomposition<State>where
State: Unpin,
impl<State> UnwindSafe for SparseTensorDecomposition<State>where
State: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features