1use scirs2_core::ndarray::{Array1, Array2};
7use serde::{Deserialize, Serialize};
8use sklears_core::{
9 error::{Result as SklResult, SklearsError},
10 types::Float,
11};
12use std::collections::HashMap;
13use std::sync::{Arc, RwLock};
14
15#[derive(Debug)]
17pub struct NLPPipeline {
18 preprocessors: Vec<Box<dyn TextPreprocessor>>,
20 extractors: Vec<Box<dyn FeatureExtractor>>,
22 analyzers: Vec<Box<dyn TextAnalyzer>>,
24 models: HashMap<String, Box<dyn LanguageModel>>,
26 config: NLPPipelineConfig,
28 stats: Arc<RwLock<ProcessingStats>>,
30}
31
32#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct NLPPipelineConfig {
35 pub default_language: String,
37 pub auto_language_detection: bool,
39 pub max_text_length: usize,
41 pub batch_size: usize,
43 pub parallel_processing: bool,
45 pub preprocessing: PreprocessingConfig,
47 pub feature_extraction: FeatureExtractionConfig,
49 pub models: HashMap<String, ModelConfig>,
51}
52
53#[derive(Debug, Clone, Serialize, Deserialize)]
55pub struct PreprocessingConfig {
56 pub normalize_text: bool,
58 pub lowercase: bool,
60 pub remove_punctuation: bool,
62 pub remove_stopwords: bool,
64 pub stemming: bool,
66 pub lemmatization: bool,
68 pub custom_stopwords: Vec<String>,
70 pub supported_languages: Vec<String>,
72}
73
74#[derive(Debug, Clone, Serialize, Deserialize)]
76pub struct FeatureExtractionConfig {
77 pub bag_of_words: bool,
79 pub tfidf: bool,
81 pub ngrams: bool,
83 pub ngram_range: (usize, usize),
85 pub max_features: Option<usize>,
87 pub min_df: f64,
89 pub max_df: f64,
91 pub word_embeddings: bool,
93 pub embedding_dim: usize,
95}
96
97#[derive(Debug, Clone, Serialize, Deserialize)]
99pub struct ModelConfig {
100 pub model_type: ModelType,
102 pub parameters: HashMap<String, serde_json::Value>,
104 pub training: TrainingConfig,
106 pub evaluation: EvaluationConfig,
108}
109
110#[derive(Debug, Clone, Serialize, Deserialize)]
112pub enum ModelType {
113 SentimentAnalysis,
115 NamedEntityRecognition,
117 PartOfSpeechTagging,
119 LanguageDetection,
121 TextClassification,
123 TopicModeling,
125 QuestionAnswering,
127 TextSummarization,
129 Translation,
131 Custom(String),
133}
134
135#[derive(Debug, Clone, Serialize, Deserialize)]
137pub struct TrainingConfig {
138 pub epochs: usize,
140 pub learning_rate: f64,
142 pub batch_size: usize,
144 pub validation_split: f64,
146 pub early_stopping_patience: Option<usize>,
148}
149
150#[derive(Debug, Clone, Serialize, Deserialize)]
152pub struct EvaluationConfig {
153 pub metrics: Vec<EvaluationMetric>,
155 pub cv_folds: usize,
157 pub test_size: f64,
159}
160
161#[derive(Debug, Clone, Serialize, Deserialize)]
163pub enum EvaluationMetric {
164 Accuracy,
166 Precision,
168 Recall,
170 F1Score,
172 RocAuc,
174 Perplexity,
176 BleuScore,
178 RougeScore,
180 Custom(String),
182}
183
184pub trait TextPreprocessor: Send + Sync + std::fmt::Debug {
186 fn process_text(&self, text: &str) -> SklResult<String>;
188
189 fn process_batch(&self, texts: &[String]) -> SklResult<Vec<String>> {
191 texts.iter().map(|text| self.process_text(text)).collect()
192 }
193
194 fn name(&self) -> &str;
196}
197
198pub trait FeatureExtractor: Send + Sync + std::fmt::Debug {
200 fn extract_features(&self, text: &str) -> SklResult<Array1<Float>>;
202
203 fn extract_batch_features(&self, texts: &[String]) -> SklResult<Array2<Float>> {
205 let features: SklResult<Vec<Array1<Float>>> = texts
206 .iter()
207 .map(|text| self.extract_features(text))
208 .collect();
209
210 let feature_vecs = features?;
211 if feature_vecs.is_empty() {
212 return Err(SklearsError::InvalidInput(
213 "Empty feature batch".to_string(),
214 ));
215 }
216
217 let n_samples = feature_vecs.len();
218 let n_features = feature_vecs[0].len();
219 let mut result = Array2::zeros((n_samples, n_features));
220
221 for (i, features) in feature_vecs.iter().enumerate() {
222 result.row_mut(i).assign(features);
223 }
224
225 Ok(result)
226 }
227
228 fn name(&self) -> &str;
230
231 fn feature_dim(&self) -> usize;
233}
234
235pub trait TextAnalyzer: Send + Sync + std::fmt::Debug {
237 fn analyze(&self, text: &str) -> SklResult<AnalysisResult>;
239
240 fn analyze_batch(&self, texts: &[String]) -> SklResult<Vec<AnalysisResult>> {
242 texts.iter().map(|text| self.analyze(text)).collect()
243 }
244
245 fn name(&self) -> &str;
247}
248
249pub trait LanguageModel: Send + Sync + std::fmt::Debug {
251 fn predict(&self, text: &str) -> SklResult<ModelPrediction>;
253
254 fn generate(&self, prompt: &str, max_length: usize) -> SklResult<String>;
256
257 fn calculate_probability(&self, text: &str) -> SklResult<f64>;
259
260 fn name(&self) -> &str;
262
263 fn model_type(&self) -> ModelType;
265}
266
267#[derive(Debug, Clone, Serialize, Deserialize)]
269pub struct AnalysisResult {
270 pub analysis_type: String,
272 pub result: serde_json::Value,
274 pub confidence: f64,
276 pub metadata: HashMap<String, String>,
278}
279
280#[derive(Debug, Clone, Serialize, Deserialize)]
282pub struct ModelPrediction {
283 pub prediction: serde_json::Value,
285 pub confidence: f64,
287 pub alternatives: Vec<(serde_json::Value, f64)>,
289 pub metadata: HashMap<String, String>,
291}
292
293#[derive(Debug, Clone, Default)]
295pub struct ProcessingStats {
296 pub texts_processed: usize,
298 pub total_processing_time: std::time::Duration,
300 pub avg_processing_time: std::time::Duration,
302 pub language_distribution: HashMap<String, usize>,
304 pub error_count: usize,
306 pub last_processing: Option<std::time::Instant>,
308}
309
310#[derive(Debug)]
312pub struct TextNormalizer {
313 config: PreprocessingConfig,
315 stopwords: HashMap<String, Vec<String>>,
317}
318
319#[derive(Debug)]
321pub struct TfIdfExtractor {
322 config: FeatureExtractionConfig,
324 vocabulary: HashMap<String, usize>,
326 idf_values: Array1<Float>,
328 feature_names: Vec<String>,
330 fitted: bool,
332}
333
334#[derive(Debug)]
336pub struct BagOfWordsExtractor {
337 config: FeatureExtractionConfig,
339 vocabulary: HashMap<String, usize>,
341 feature_names: Vec<String>,
343 fitted: bool,
345}
346
347#[derive(Debug)]
349pub struct WordEmbeddingExtractor {
350 config: FeatureExtractionConfig,
352 embeddings: Array2<Float>,
354 word_to_idx: HashMap<String, usize>,
356 idx_to_word: Vec<String>,
358}
359
360#[derive(Debug)]
362pub struct SentimentAnalyzer {
363 weights: Array1<Float>,
365 bias: Float,
367 vocabulary: HashMap<String, usize>,
369 labels: Vec<String>,
371}
372
373#[derive(Debug)]
375pub struct NERAnalyzer {
376 model: Box<dyn LanguageModel>,
378 entity_types: Vec<String>,
380 config: ModelConfig,
382}
383
384#[derive(Debug)]
386pub struct LanguageDetector {
387 language_models: HashMap<String, Box<dyn LanguageModel>>,
389 supported_languages: Vec<String>,
391 threshold: f64,
393}
394
395#[derive(Debug)]
397pub struct TopicModelingAnalyzer {
398 num_topics: usize,
400 topic_word_dist: Array2<Float>,
402 vocabulary: HashMap<String, usize>,
404 topic_labels: Vec<String>,
406}
407
408#[derive(Debug)]
410pub struct TextClassifier {
411 model_type: ModelType,
413 weights: Array2<Float>,
415 bias: Array1<Float>,
417 class_labels: Vec<String>,
419 feature_extractor: Box<dyn FeatureExtractor>,
421}
422
423#[derive(Debug)]
425pub struct QuestionAnsweringModel {
426 context_encoder: Box<dyn LanguageModel>,
428 question_encoder: Box<dyn LanguageModel>,
430 answer_generator: Box<dyn LanguageModel>,
432 config: ModelConfig,
434}
435
436#[derive(Debug)]
438pub struct TextSummarizationModel {
439 model: Box<dyn LanguageModel>,
441 max_summary_length: usize,
443 min_summary_length: usize,
445 strategy: SummarizationStrategy,
447}
448
449#[derive(Debug, Clone)]
451pub enum SummarizationStrategy {
452 Extractive,
454 Abstractive,
456 Hybrid,
458}
459
460#[derive(Debug)]
462pub struct TranslationModel {
463 source_language: String,
465 target_language: String,
467 model: Box<dyn LanguageModel>,
469 config: ModelConfig,
471}
472
473#[derive(Debug)]
475pub struct MultiLanguageSupport {
476 language_pipelines: HashMap<String, NLPPipeline>,
478 language_detector: LanguageDetector,
480 default_language: String,
482}
483
484#[derive(Debug)]
486pub struct DocumentProcessor {
487 nlp_pipeline: NLPPipeline,
489 parsers: HashMap<String, Box<dyn DocumentParser>>,
491 formatters: HashMap<String, Box<dyn OutputFormatter>>,
493}
494
495pub trait DocumentParser: Send + Sync + std::fmt::Debug {
497 fn parse(&self, content: &[u8]) -> SklResult<Vec<String>>;
499
500 fn supported_formats(&self) -> Vec<String>;
502
503 fn name(&self) -> &str;
505}
506
507pub trait OutputFormatter: Send + Sync + std::fmt::Debug {
509 fn format(&self, results: &[AnalysisResult]) -> SklResult<String>;
511
512 fn supported_formats(&self) -> Vec<String>;
514
515 fn name(&self) -> &str;
517}
518
519#[derive(Debug)]
521pub struct ConversationalAI {
522 intent_classifier: TextClassifier,
524 entity_extractor: NERAnalyzer,
526 response_generator: Box<dyn LanguageModel>,
528 context_manager: ContextManager,
530 conversation_history: Vec<ConversationTurn>,
532}
533
534#[derive(Debug, Clone)]
536pub struct ConversationTurn {
537 pub user_input: String,
539 pub system_response: String,
541 pub intent: Option<String>,
543 pub entities: Vec<Entity>,
545 pub timestamp: std::time::Instant,
547}
548
549#[derive(Debug, Clone, Serialize, Deserialize)]
551pub struct Entity {
552 pub text: String,
554 pub entity_type: String,
556 pub start: usize,
558 pub end: usize,
560 pub confidence: f64,
562}
563
564#[derive(Debug)]
566pub struct ContextManager {
567 current_context: HashMap<String, serde_json::Value>,
569 context_history: Vec<HashMap<String, serde_json::Value>>,
571 max_context_length: usize,
573}
574
575impl Default for NLPPipelineConfig {
576 fn default() -> Self {
577 Self {
578 default_language: "en".to_string(),
579 auto_language_detection: true,
580 max_text_length: 10000,
581 batch_size: 32,
582 parallel_processing: true,
583 preprocessing: PreprocessingConfig {
584 normalize_text: true,
585 lowercase: true,
586 remove_punctuation: false,
587 remove_stopwords: true,
588 stemming: false,
589 lemmatization: true,
590 custom_stopwords: vec![],
591 supported_languages: vec!["en".to_string(), "es".to_string(), "fr".to_string()],
592 },
593 feature_extraction: FeatureExtractionConfig {
594 bag_of_words: true,
595 tfidf: true,
596 ngrams: true,
597 ngram_range: (1, 3),
598 max_features: Some(10000),
599 min_df: 0.01,
600 max_df: 0.95,
601 word_embeddings: true,
602 embedding_dim: 300,
603 },
604 models: HashMap::new(),
605 }
606 }
607}
608
609impl Default for TrainingConfig {
610 fn default() -> Self {
611 Self {
612 epochs: 10,
613 learning_rate: 0.001,
614 batch_size: 32,
615 validation_split: 0.2,
616 early_stopping_patience: Some(3),
617 }
618 }
619}
620
621impl Default for EvaluationConfig {
622 fn default() -> Self {
623 Self {
624 metrics: vec![
625 EvaluationMetric::Accuracy,
626 EvaluationMetric::Precision,
627 EvaluationMetric::Recall,
628 EvaluationMetric::F1Score,
629 ],
630 cv_folds: 5,
631 test_size: 0.2,
632 }
633 }
634}
635
636impl Default for PreprocessingConfig {
637 fn default() -> Self {
638 Self {
639 normalize_text: true,
640 lowercase: true,
641 remove_punctuation: false,
642 remove_stopwords: true,
643 stemming: false,
644 lemmatization: true,
645 custom_stopwords: vec![],
646 supported_languages: vec!["en".to_string()],
647 }
648 }
649}
650
651impl Default for FeatureExtractionConfig {
652 fn default() -> Self {
653 Self {
654 bag_of_words: true,
655 tfidf: true,
656 ngrams: true,
657 ngram_range: (1, 3),
658 max_features: Some(10000),
659 min_df: 0.01,
660 max_df: 0.95,
661 word_embeddings: true,
662 embedding_dim: 300,
663 }
664 }
665}
666
667impl NLPPipeline {
668 #[must_use]
670 pub fn new(config: NLPPipelineConfig) -> Self {
671 Self {
672 preprocessors: Vec::new(),
673 extractors: Vec::new(),
674 analyzers: Vec::new(),
675 models: HashMap::new(),
676 config,
677 stats: Arc::new(RwLock::new(ProcessingStats::default())),
678 }
679 }
680
681 pub fn add_preprocessor(&mut self, preprocessor: Box<dyn TextPreprocessor>) {
683 self.preprocessors.push(preprocessor);
684 }
685
686 pub fn add_extractor(&mut self, extractor: Box<dyn FeatureExtractor>) {
688 self.extractors.push(extractor);
689 }
690
691 pub fn add_analyzer(&mut self, analyzer: Box<dyn TextAnalyzer>) {
693 self.analyzers.push(analyzer);
694 }
695
696 pub fn add_model(&mut self, name: String, model: Box<dyn LanguageModel>) {
698 self.models.insert(name, model);
699 }
700
701 pub fn process_text(&self, text: &str) -> SklResult<ProcessingResult> {
703 let start_time = std::time::Instant::now();
704
705 let mut processed_text = text.to_string();
707 for preprocessor in &self.preprocessors {
708 processed_text = preprocessor.process_text(&processed_text)?;
709 }
710
711 let mut features = Vec::new();
713 for extractor in &self.extractors {
714 let feature_vec = extractor.extract_features(&processed_text)?;
715 features.push((extractor.name().to_string(), feature_vec));
716 }
717
718 let mut analysis_results = Vec::new();
720 for analyzer in &self.analyzers {
721 let result = analyzer.analyze(&processed_text)?;
722 analysis_results.push(result);
723 }
724
725 let mut model_predictions = HashMap::new();
727 for (model_name, model) in &self.models {
728 let prediction = model.predict(&processed_text)?;
729 model_predictions.insert(model_name.clone(), prediction);
730 }
731
732 let processing_time = start_time.elapsed();
733
734 {
736 let mut stats = self.stats.write().unwrap();
737 stats.texts_processed += 1;
738 stats.total_processing_time += processing_time;
739 stats.avg_processing_time = stats.total_processing_time / stats.texts_processed as u32;
740 stats.last_processing = Some(std::time::Instant::now());
741 }
742
743 Ok(ProcessingResult {
744 original_text: text.to_string(),
745 processed_text,
746 features,
747 analysis_results,
748 model_predictions,
749 processing_time,
750 metadata: HashMap::new(),
751 })
752 }
753
754 pub fn process_batch(&self, texts: &[String]) -> SklResult<Vec<ProcessingResult>> {
756 if self.config.parallel_processing {
757 texts.iter().map(|text| self.process_text(text)).collect()
759 } else {
760 texts.iter().map(|text| self.process_text(text)).collect()
761 }
762 }
763
764 #[must_use]
766 pub fn get_stats(&self) -> ProcessingStats {
767 self.stats.read().unwrap().clone()
768 }
769
770 pub fn reset_stats(&self) {
772 let mut stats = self.stats.write().unwrap();
773 *stats = ProcessingStats::default();
774 }
775}
776
777#[derive(Debug, Clone)]
779pub struct ProcessingResult {
780 pub original_text: String,
782 pub processed_text: String,
784 pub features: Vec<(String, Array1<Float>)>,
786 pub analysis_results: Vec<AnalysisResult>,
788 pub model_predictions: HashMap<String, ModelPrediction>,
790 pub processing_time: std::time::Duration,
792 pub metadata: HashMap<String, String>,
794}
795
796impl TextNormalizer {
797 #[must_use]
799 pub fn new(config: PreprocessingConfig) -> Self {
800 let mut stopwords = HashMap::new();
801
802 stopwords.insert(
804 "en".to_string(),
805 vec![
806 "the".to_string(),
807 "a".to_string(),
808 "an".to_string(),
809 "and".to_string(),
810 "or".to_string(),
811 "but".to_string(),
812 "in".to_string(),
813 "on".to_string(),
814 "at".to_string(),
815 "to".to_string(),
816 "for".to_string(),
817 "of".to_string(),
818 "with".to_string(),
819 "by".to_string(),
820 "is".to_string(),
821 "are".to_string(),
822 "was".to_string(),
823 "were".to_string(),
824 ],
825 );
826
827 Self { config, stopwords }
828 }
829
830 pub fn add_stopwords(&mut self, language: &str, stopwords: Vec<String>) {
832 self.stopwords.insert(language.to_string(), stopwords);
833 }
834}
835
836impl TextPreprocessor for TextNormalizer {
837 fn process_text(&self, text: &str) -> SklResult<String> {
838 let mut result = text.to_string();
839
840 if self.config.normalize_text {
841 result = result
843 .chars()
844 .map(|c| if c.is_whitespace() { ' ' } else { c })
845 .collect::<String>();
846
847 result = result.split_whitespace().collect::<Vec<_>>().join(" ");
849 }
850
851 if self.config.lowercase {
852 result = result.to_lowercase();
853 }
854
855 if self.config.remove_punctuation {
856 result = result
857 .chars()
858 .filter(|c| c.is_alphanumeric() || c.is_whitespace())
859 .collect();
860 }
861
862 if self.config.remove_stopwords {
863 let words: Vec<&str> = result.split_whitespace().collect();
864 let language = &self.config.supported_languages[0]; if let Some(stopwords) = self.stopwords.get(language) {
867 let filtered_words: Vec<&str> = words
868 .into_iter()
869 .filter(|word| !stopwords.contains(&(*word).to_string()))
870 .collect();
871 result = filtered_words.join(" ");
872 }
873 }
874
875 Ok(result)
876 }
877
878 fn name(&self) -> &'static str {
879 "TextNormalizer"
880 }
881}
882
883impl TfIdfExtractor {
884 #[must_use]
886 pub fn new(config: FeatureExtractionConfig) -> Self {
887 Self {
888 config,
889 vocabulary: HashMap::new(),
890 idf_values: Array1::zeros(0),
891 feature_names: Vec::new(),
892 fitted: false,
893 }
894 }
895
896 pub fn fit(&mut self, documents: &[String]) -> SklResult<()> {
898 let mut word_counts = HashMap::new();
900 let total_docs = documents.len();
901
902 for doc in documents {
904 let words: std::collections::HashSet<String> =
905 doc.split_whitespace().map(str::to_lowercase).collect();
906
907 for word in words {
908 *word_counts.entry(word).or_insert(0) += 1;
909 }
910 }
911
912 let min_count = (self.config.min_df * total_docs as f64) as usize;
914 let max_count = (self.config.max_df * total_docs as f64) as usize;
915
916 let mut vocab_words: Vec<String> = word_counts
917 .into_iter()
918 .filter(|(_, count)| *count >= min_count && *count <= max_count)
919 .map(|(word, _)| word)
920 .collect();
921
922 vocab_words.sort();
923
924 if let Some(max_features) = self.config.max_features {
926 vocab_words.truncate(max_features);
927 }
928
929 self.vocabulary = vocab_words
931 .iter()
932 .enumerate()
933 .map(|(i, word)| (word.clone(), i))
934 .collect();
935
936 self.feature_names = vocab_words;
937
938 let vocab_size = self.vocabulary.len();
940 let mut idf_values = Array1::zeros(vocab_size);
941
942 for (word, &idx) in &self.vocabulary {
943 let doc_freq = documents.iter().filter(|doc| doc.contains(word)).count();
944
945 let idf = (total_docs as f64 / (1.0 + doc_freq as f64)).ln();
946 idf_values[idx] = idf as Float;
947 }
948
949 self.idf_values = idf_values;
950 self.fitted = true;
951
952 Ok(())
953 }
954}
955
956impl FeatureExtractor for TfIdfExtractor {
957 fn extract_features(&self, text: &str) -> SklResult<Array1<Float>> {
958 if !self.fitted {
959 return Err(SklearsError::InvalidInput(
960 "TF-IDF extractor not fitted".to_string(),
961 ));
962 }
963
964 let vocab_size = self.vocabulary.len();
965 let mut features = Array1::zeros(vocab_size);
966
967 let words: Vec<&str> = text.split_whitespace().collect();
969 let total_words = words.len() as f64;
970
971 let mut word_counts = HashMap::new();
972 for word in words {
973 let word = word.to_lowercase();
974 *word_counts.entry(word).or_insert(0) += 1;
975 }
976
977 for (word, count) in word_counts {
979 if let Some(&idx) = self.vocabulary.get(&word) {
980 let tf = f64::from(count) / total_words;
981 let idf = self.idf_values[idx];
982 features[idx] = (tf * idf) as Float;
983 }
984 }
985
986 Ok(features)
987 }
988
989 fn name(&self) -> &'static str {
990 "TfIdfExtractor"
991 }
992
993 fn feature_dim(&self) -> usize {
994 self.vocabulary.len()
995 }
996}
997
998impl Default for SentimentAnalyzer {
999 fn default() -> Self {
1000 Self::new()
1001 }
1002}
1003
1004impl SentimentAnalyzer {
1005 #[must_use]
1007 pub fn new() -> Self {
1008 let weights = Array1::zeros(1000); let bias = 0.0;
1011 let vocabulary = HashMap::new();
1012 let labels = vec![
1013 "negative".to_string(),
1014 "neutral".to_string(),
1015 "positive".to_string(),
1016 ];
1017
1018 Self {
1019 weights,
1020 bias,
1021 vocabulary,
1022 labels,
1023 }
1024 }
1025
1026 pub fn train(&mut self, texts: &[String], labels: &[String]) -> SklResult<()> {
1028 Ok(())
1031 }
1032}
1033
1034impl TextAnalyzer for SentimentAnalyzer {
1035 fn analyze(&self, text: &str) -> SklResult<AnalysisResult> {
1036 let positive_words = [
1038 "good",
1039 "great",
1040 "excellent",
1041 "amazing",
1042 "wonderful",
1043 "fantastic",
1044 ];
1045 let negative_words = ["bad", "terrible", "awful", "horrible", "disgusting", "hate"];
1046
1047 let text_lower = text.to_lowercase();
1048 let positive_count = positive_words
1049 .iter()
1050 .filter(|word| text_lower.contains(*word))
1051 .count();
1052 let negative_count = negative_words
1053 .iter()
1054 .filter(|word| text_lower.contains(*word))
1055 .count();
1056
1057 let (sentiment, confidence) = if positive_count > negative_count {
1058 ("positive", 0.7 + (positive_count as f64 * 0.1))
1059 } else if negative_count > positive_count {
1060 ("negative", 0.7 + (negative_count as f64 * 0.1))
1061 } else {
1062 ("neutral", 0.5)
1063 };
1064
1065 let result = serde_json::json!({
1066 "sentiment": sentiment,
1067 "positive_score": positive_count,
1068 "negative_score": negative_count
1069 });
1070
1071 Ok(AnalysisResult {
1072 analysis_type: "sentiment".to_string(),
1073 result,
1074 confidence: confidence.min(1.0),
1075 metadata: HashMap::new(),
1076 })
1077 }
1078
1079 fn name(&self) -> &'static str {
1080 "SentimentAnalyzer"
1081 }
1082}
1083
1084impl Default for LanguageDetector {
1085 fn default() -> Self {
1086 Self::new()
1087 }
1088}
1089
1090impl LanguageDetector {
1091 #[must_use]
1093 pub fn new() -> Self {
1094 Self {
1095 language_models: HashMap::new(),
1096 supported_languages: vec!["en".to_string(), "es".to_string(), "fr".to_string()],
1097 threshold: 0.5,
1098 }
1099 }
1100
1101 pub fn detect_language(&self, text: &str) -> SklResult<String> {
1103 let text_lower = text.to_lowercase();
1105
1106 if text_lower.chars().any(|c| "ñáéíóúü".contains(c)) {
1108 return Ok("es".to_string()); }
1110
1111 if text_lower.chars().any(|c| "àâäéèêëïîôöùûüÿç".contains(c)) {
1112 return Ok("fr".to_string()); }
1114
1115 Ok("en".to_string())
1117 }
1118}
1119
1120impl Default for ConversationalAI {
1122 fn default() -> Self {
1123 Self::new()
1124 }
1125}
1126
1127impl ConversationalAI {
1128 #[must_use]
1130 pub fn new() -> Self {
1131 let intent_classifier = TextClassifier::new(ModelType::TextClassification);
1133 let entity_extractor = NERAnalyzer::new();
1134 let response_generator = Box::new(SimpleLanguageModel::new());
1135 let context_manager = ContextManager::new();
1136
1137 Self {
1138 intent_classifier,
1139 entity_extractor,
1140 response_generator,
1141 context_manager,
1142 conversation_history: Vec::new(),
1143 }
1144 }
1145
1146 pub fn process_input(&mut self, user_input: &str) -> SklResult<ConversationResponse> {
1148 let intent_result = self.intent_classifier.classify(user_input)?;
1150 let intent = intent_result
1151 .prediction
1152 .as_str()
1153 .map(std::string::ToString::to_string);
1154
1155 let entity_result = self.entity_extractor.analyze(user_input)?;
1157 let entities = self.parse_entities(&entity_result)?;
1158
1159 self.context_manager.update_context(&intent, &entities);
1161
1162 let response = self.response_generator.generate(user_input, 100)?;
1164
1165 let turn = ConversationTurn {
1167 user_input: user_input.to_string(),
1168 system_response: response.clone(),
1169 intent,
1170 entities,
1171 timestamp: std::time::Instant::now(),
1172 };
1173
1174 self.conversation_history.push(turn);
1175
1176 Ok(ConversationResponse {
1177 response,
1178 intent: intent_result
1179 .prediction
1180 .as_str()
1181 .map(std::string::ToString::to_string),
1182 entities: entity_result,
1183 confidence: intent_result.confidence,
1184 context: self.context_manager.get_current_context(),
1185 })
1186 }
1187
1188 fn parse_entities(&self, entity_result: &AnalysisResult) -> SklResult<Vec<Entity>> {
1189 Ok(Vec::new())
1192 }
1193}
1194
1195#[derive(Debug, Clone)]
1197pub struct ConversationResponse {
1198 pub response: String,
1200 pub intent: Option<String>,
1202 pub entities: AnalysisResult,
1204 pub confidence: f64,
1206 pub context: HashMap<String, serde_json::Value>,
1208}
1209
1210impl Default for ContextManager {
1211 fn default() -> Self {
1212 Self::new()
1213 }
1214}
1215
1216impl ContextManager {
1217 #[must_use]
1219 pub fn new() -> Self {
1220 Self {
1221 current_context: HashMap::new(),
1222 context_history: Vec::new(),
1223 max_context_length: 10,
1224 }
1225 }
1226
1227 pub fn update_context(&mut self, intent: &Option<String>, entities: &[Entity]) {
1229 if let Some(intent) = intent {
1230 self.current_context.insert(
1231 "last_intent".to_string(),
1232 serde_json::Value::String(intent.clone()),
1233 );
1234 }
1235
1236 for entity in entities {
1237 self.current_context.insert(
1238 entity.entity_type.clone(),
1239 serde_json::Value::String(entity.text.clone()),
1240 );
1241 }
1242
1243 self.context_history.push(self.current_context.clone());
1245
1246 if self.context_history.len() > self.max_context_length {
1248 self.context_history.remove(0);
1249 }
1250 }
1251
1252 #[must_use]
1254 pub fn get_current_context(&self) -> HashMap<String, serde_json::Value> {
1255 self.current_context.clone()
1256 }
1257
1258 pub fn clear_context(&mut self) {
1260 self.current_context.clear();
1261 }
1262}
1263
1264#[derive(Debug)]
1266pub struct SimpleLanguageModel {
1267 name: String,
1268 model_type: ModelType,
1269}
1270
1271impl Default for SimpleLanguageModel {
1272 fn default() -> Self {
1273 Self::new()
1274 }
1275}
1276
1277impl SimpleLanguageModel {
1278 #[must_use]
1279 pub fn new() -> Self {
1280 Self {
1281 name: "SimpleLanguageModel".to_string(),
1282 model_type: ModelType::Custom("simple".to_string()),
1283 }
1284 }
1285}
1286
1287impl LanguageModel for SimpleLanguageModel {
1288 fn predict(&self, text: &str) -> SklResult<ModelPrediction> {
1289 Ok(ModelPrediction {
1291 prediction: serde_json::Value::String(format!("Response to: {text}")),
1292 confidence: 0.5,
1293 alternatives: Vec::new(),
1294 metadata: HashMap::new(),
1295 })
1296 }
1297
1298 fn generate(&self, prompt: &str, max_length: usize) -> SklResult<String> {
1299 Ok(format!("Generated response for: {prompt}"))
1301 }
1302
1303 fn calculate_probability(&self, _text: &str) -> SklResult<f64> {
1304 Ok(0.5) }
1306
1307 fn name(&self) -> &str {
1308 &self.name
1309 }
1310
1311 fn model_type(&self) -> ModelType {
1312 self.model_type.clone()
1313 }
1314}
1315
1316impl TextClassifier {
1318 #[must_use]
1320 pub fn new(model_type: ModelType) -> Self {
1321 let weights = Array2::zeros((3, 1000)); let bias = Array1::zeros(3);
1324 let class_labels = vec![
1325 "class1".to_string(),
1326 "class2".to_string(),
1327 "class3".to_string(),
1328 ];
1329 let feature_extractor = Box::new(TfIdfExtractor::new(FeatureExtractionConfig::default()));
1330
1331 Self {
1332 model_type,
1333 weights,
1334 bias,
1335 class_labels,
1336 feature_extractor,
1337 }
1338 }
1339
1340 pub fn classify(&self, text: &str) -> SklResult<ModelPrediction> {
1342 let prediction = serde_json::Value::String("intent_greeting".to_string());
1344
1345 Ok(ModelPrediction {
1346 prediction,
1347 confidence: 0.8,
1348 alternatives: vec![
1349 (
1350 serde_json::Value::String("intent_question".to_string()),
1351 0.15,
1352 ),
1353 (
1354 serde_json::Value::String("intent_goodbye".to_string()),
1355 0.05,
1356 ),
1357 ],
1358 metadata: HashMap::new(),
1359 })
1360 }
1361}
1362
1363impl Default for NERAnalyzer {
1365 fn default() -> Self {
1366 Self::new()
1367 }
1368}
1369
1370impl NERAnalyzer {
1371 #[must_use]
1373 pub fn new() -> Self {
1374 Self {
1375 model: Box::new(SimpleLanguageModel::new()),
1376 entity_types: vec![
1377 "PERSON".to_string(),
1378 "ORGANIZATION".to_string(),
1379 "LOCATION".to_string(),
1380 "DATE".to_string(),
1381 "TIME".to_string(),
1382 ],
1383 config: ModelConfig {
1384 model_type: ModelType::NamedEntityRecognition,
1385 parameters: HashMap::new(),
1386 training: TrainingConfig::default(),
1387 evaluation: EvaluationConfig::default(),
1388 },
1389 }
1390 }
1391}
1392
1393impl TextAnalyzer for NERAnalyzer {
1394 fn analyze(&self, text: &str) -> SklResult<AnalysisResult> {
1395 let mut entities = Vec::new();
1397
1398 let words: Vec<&str> = text.split_whitespace().collect();
1400
1401 for (i, word) in words.iter().enumerate() {
1402 if word.chars().next().unwrap_or('a').is_uppercase() && word.len() > 2 {
1404 entities.push(serde_json::json!({
1405 "text": word,
1406 "type": "PERSON",
1407 "start": i,
1408 "end": i + 1,
1409 "confidence": 0.6
1410 }));
1411 }
1412 }
1413
1414 let result = serde_json::json!({
1415 "entities": entities
1416 });
1417
1418 Ok(AnalysisResult {
1419 analysis_type: "named_entity_recognition".to_string(),
1420 result,
1421 confidence: 0.7,
1422 metadata: HashMap::new(),
1423 })
1424 }
1425
1426 fn name(&self) -> &'static str {
1427 "NERAnalyzer"
1428 }
1429}
1430
1431#[allow(non_snake_case)]
1432#[cfg(test)]
1433mod tests {
1434 use super::*;
1435
1436 #[test]
1437 fn test_nlp_pipeline_creation() {
1438 let config = NLPPipelineConfig::default();
1439 let pipeline = NLPPipeline::new(config);
1440
1441 assert_eq!(pipeline.preprocessors.len(), 0);
1442 assert_eq!(pipeline.extractors.len(), 0);
1443 assert_eq!(pipeline.analyzers.len(), 0);
1444 assert_eq!(pipeline.models.len(), 0);
1445 }
1446
1447 #[test]
1448 fn test_text_normalizer() {
1449 let config = PreprocessingConfig {
1450 normalize_text: true,
1451 lowercase: true,
1452 remove_punctuation: true,
1453 remove_stopwords: true,
1454 stemming: false,
1455 lemmatization: false,
1456 custom_stopwords: vec![],
1457 supported_languages: vec!["en".to_string()],
1458 };
1459
1460 let normalizer = TextNormalizer::new(config);
1461 let result = normalizer
1462 .process_text("Hello, World! This is a test.")
1463 .unwrap();
1464
1465 assert!(!result.contains(","));
1466 assert!(!result.contains("!"));
1467 assert!(!result.contains("."));
1468 assert_eq!(
1469 result
1470 .chars()
1471 .all(|c| c.is_lowercase() || c.is_whitespace()),
1472 true
1473 );
1474 }
1475
1476 #[test]
1477 fn test_tfidf_extractor() {
1478 let config = FeatureExtractionConfig::default();
1479 let mut extractor = TfIdfExtractor::new(config);
1480
1481 let documents = vec![
1482 "hello world".to_string(),
1483 "world peace".to_string(),
1484 "hello peace".to_string(),
1485 ];
1486
1487 extractor.fit(&documents).unwrap();
1488
1489 assert!(extractor.fitted);
1490 assert!(extractor.vocabulary.len() > 0);
1491
1492 let features = extractor.extract_features("hello world").unwrap();
1493 assert_eq!(features.len(), extractor.vocabulary.len());
1494 }
1495
1496 #[test]
1497 fn test_sentiment_analyzer() {
1498 let analyzer = SentimentAnalyzer::new();
1499
1500 let positive_result = analyzer.analyze("This is a great product!").unwrap();
1501 let negative_result = analyzer.analyze("This is terrible and awful.").unwrap();
1502
1503 assert_eq!(positive_result.analysis_type, "sentiment");
1504 assert_eq!(negative_result.analysis_type, "sentiment");
1505
1506 let positive_sentiment = positive_result.result["sentiment"].as_str().unwrap();
1507 let negative_sentiment = negative_result.result["sentiment"].as_str().unwrap();
1508
1509 assert_eq!(positive_sentiment, "positive");
1510 assert_eq!(negative_sentiment, "negative");
1511 }
1512
1513 #[test]
1514 fn test_language_detector() {
1515 let detector = LanguageDetector::new();
1516
1517 let english_text = "Hello, how are you today?";
1518 let spanish_text = "Hola, ¿cómo estás hoy?";
1519 let french_text = "Bonjour, comment ça va aujourd'hui?"; assert_eq!(detector.detect_language(english_text).unwrap(), "en");
1522 assert_eq!(detector.detect_language(spanish_text).unwrap(), "es");
1523 assert_eq!(detector.detect_language(french_text).unwrap(), "fr");
1524 }
1525
1526 #[test]
1527 fn test_ner_analyzer() {
1528 let analyzer = NERAnalyzer::new();
1529
1530 let result = analyzer
1531 .analyze("John Smith works at Microsoft in Seattle.")
1532 .unwrap();
1533
1534 assert_eq!(result.analysis_type, "named_entity_recognition");
1535 assert!(result.result["entities"].is_array());
1536 }
1537
1538 #[test]
1539 fn test_conversational_ai() {
1540 let mut ai = ConversationalAI::new();
1541
1542 let response = ai.process_input("Hello, how are you?").unwrap();
1543
1544 assert!(!response.response.is_empty());
1545 assert!(response.confidence > 0.0);
1546 assert_eq!(ai.conversation_history.len(), 1);
1547 }
1548
1549 #[test]
1550 fn test_context_manager() {
1551 let mut manager = ContextManager::new();
1552
1553 let intent = Some("greeting".to_string());
1554 let entities = vec![Entity {
1555 text: "John".to_string(),
1556 entity_type: "PERSON".to_string(),
1557 start: 0,
1558 end: 4,
1559 confidence: 0.9,
1560 }];
1561
1562 manager.update_context(&intent, &entities);
1563
1564 let context = manager.get_current_context();
1565 assert!(context.contains_key("last_intent"));
1566 assert!(context.contains_key("PERSON"));
1567 }
1568
1569 #[test]
1570 fn test_pipeline_with_components() {
1571 let mut pipeline = NLPPipeline::new(NLPPipelineConfig::default());
1572
1573 let normalizer = Box::new(TextNormalizer::new(PreprocessingConfig::default()));
1575 let analyzer = Box::new(SentimentAnalyzer::new());
1576
1577 pipeline.add_preprocessor(normalizer);
1578 pipeline.add_analyzer(analyzer);
1579
1580 let result = pipeline.process_text("This is a great example!").unwrap();
1581
1582 assert!(!result.original_text.is_empty());
1583 assert!(!result.processed_text.is_empty());
1584 assert!(result.analysis_results.len() > 0);
1585 }
1586
1587 #[test]
1588 fn test_model_types() {
1589 let sentiment_type = ModelType::SentimentAnalysis;
1590 let ner_type = ModelType::NamedEntityRecognition;
1591 let custom_type = ModelType::Custom("test".to_string());
1592
1593 match sentiment_type {
1594 ModelType::SentimentAnalysis => assert!(true),
1595 _ => assert!(false),
1596 }
1597
1598 match ner_type {
1599 ModelType::NamedEntityRecognition => assert!(true),
1600 _ => assert!(false),
1601 }
1602
1603 match custom_type {
1604 ModelType::Custom(name) => assert_eq!(name, "test"),
1605 _ => assert!(false),
1606 }
1607 }
1608
1609 #[test]
1610 fn test_evaluation_metrics() {
1611 let metrics = vec![
1612 EvaluationMetric::Accuracy,
1613 EvaluationMetric::F1Score,
1614 EvaluationMetric::BleuScore,
1615 ];
1616
1617 assert_eq!(metrics.len(), 3);
1618 }
1619}