sklears_compose/
nlp_pipelines.rs

1//! Natural Language Processing Pipeline Components
2//!
3//! This module provides comprehensive NLP pipeline components for text processing,
4//! sentiment analysis, named entity recognition, language modeling, and multi-language support.
5
6use scirs2_core::ndarray::{Array1, Array2};
7use serde::{Deserialize, Serialize};
8use sklears_core::{
9    error::{Result as SklResult, SklearsError},
10    types::Float,
11};
12use std::collections::HashMap;
13use std::sync::{Arc, RwLock};
14
15/// Comprehensive NLP pipeline for text processing workflows
16#[derive(Debug)]
17pub struct NLPPipeline {
18    /// Text preprocessing components
19    preprocessors: Vec<Box<dyn TextPreprocessor>>,
20    /// Feature extraction components
21    extractors: Vec<Box<dyn FeatureExtractor>>,
22    /// Analysis components
23    analyzers: Vec<Box<dyn TextAnalyzer>>,
24    /// Language models
25    models: HashMap<String, Box<dyn LanguageModel>>,
26    /// Pipeline configuration
27    config: NLPPipelineConfig,
28    /// Processing statistics
29    stats: Arc<RwLock<ProcessingStats>>,
30}
31
32/// Configuration for NLP pipeline
33#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct NLPPipelineConfig {
35    /// Default language
36    pub default_language: String,
37    /// Enable automatic language detection
38    pub auto_language_detection: bool,
39    /// Maximum text length for processing
40    pub max_text_length: usize,
41    /// Batch size for processing
42    pub batch_size: usize,
43    /// Enable parallel processing
44    pub parallel_processing: bool,
45    /// Preprocessing options
46    pub preprocessing: PreprocessingConfig,
47    /// Feature extraction options
48    pub feature_extraction: FeatureExtractionConfig,
49    /// Model configurations
50    pub models: HashMap<String, ModelConfig>,
51}
52
53/// Preprocessing configuration
54#[derive(Debug, Clone, Serialize, Deserialize)]
55pub struct PreprocessingConfig {
56    /// Enable text normalization
57    pub normalize_text: bool,
58    /// Convert to lowercase
59    pub lowercase: bool,
60    /// Remove punctuation
61    pub remove_punctuation: bool,
62    /// Remove stop words
63    pub remove_stopwords: bool,
64    /// Enable stemming
65    pub stemming: bool,
66    /// Enable lemmatization
67    pub lemmatization: bool,
68    /// Custom stop words
69    pub custom_stopwords: Vec<String>,
70    /// Languages to support
71    pub supported_languages: Vec<String>,
72}
73
74/// Feature extraction configuration
75#[derive(Debug, Clone, Serialize, Deserialize)]
76pub struct FeatureExtractionConfig {
77    /// Enable bag-of-words
78    pub bag_of_words: bool,
79    /// Enable TF-IDF
80    pub tfidf: bool,
81    /// Enable n-grams
82    pub ngrams: bool,
83    /// N-gram range
84    pub ngram_range: (usize, usize),
85    /// Maximum features
86    pub max_features: Option<usize>,
87    /// Minimum document frequency
88    pub min_df: f64,
89    /// Maximum document frequency
90    pub max_df: f64,
91    /// Enable word embeddings
92    pub word_embeddings: bool,
93    /// Embedding dimensions
94    pub embedding_dim: usize,
95}
96
97/// Model configuration
98#[derive(Debug, Clone, Serialize, Deserialize)]
99pub struct ModelConfig {
100    /// Model type
101    pub model_type: ModelType,
102    /// Model parameters
103    pub parameters: HashMap<String, serde_json::Value>,
104    /// Training configuration
105    pub training: TrainingConfig,
106    /// Evaluation configuration
107    pub evaluation: EvaluationConfig,
108}
109
110/// Types of NLP models
111#[derive(Debug, Clone, Serialize, Deserialize)]
112pub enum ModelType {
113    /// SentimentAnalysis
114    SentimentAnalysis,
115    /// NamedEntityRecognition
116    NamedEntityRecognition,
117    /// PartOfSpeechTagging
118    PartOfSpeechTagging,
119    /// LanguageDetection
120    LanguageDetection,
121    /// TextClassification
122    TextClassification,
123    /// TopicModeling
124    TopicModeling,
125    /// QuestionAnswering
126    QuestionAnswering,
127    /// TextSummarization
128    TextSummarization,
129    /// Translation
130    Translation,
131    /// Custom
132    Custom(String),
133}
134
135/// Training configuration
136#[derive(Debug, Clone, Serialize, Deserialize)]
137pub struct TrainingConfig {
138    /// Number of epochs
139    pub epochs: usize,
140    /// Learning rate
141    pub learning_rate: f64,
142    /// Batch size
143    pub batch_size: usize,
144    /// Validation split
145    pub validation_split: f64,
146    /// Early stopping patience
147    pub early_stopping_patience: Option<usize>,
148}
149
150/// Evaluation configuration
151#[derive(Debug, Clone, Serialize, Deserialize)]
152pub struct EvaluationConfig {
153    /// Metrics to compute
154    pub metrics: Vec<EvaluationMetric>,
155    /// Cross-validation folds
156    pub cv_folds: usize,
157    /// Test size
158    pub test_size: f64,
159}
160
161/// Evaluation metrics
162#[derive(Debug, Clone, Serialize, Deserialize)]
163pub enum EvaluationMetric {
164    /// Accuracy
165    Accuracy,
166    /// Precision
167    Precision,
168    /// Recall
169    Recall,
170    /// F1Score
171    F1Score,
172    /// RocAuc
173    RocAuc,
174    /// Perplexity
175    Perplexity,
176    /// BleuScore
177    BleuScore,
178    /// RougeScore
179    RougeScore,
180    /// Custom
181    Custom(String),
182}
183
184/// Text preprocessing trait
185pub trait TextPreprocessor: Send + Sync + std::fmt::Debug {
186    /// Process a single text
187    fn process_text(&self, text: &str) -> SklResult<String>;
188
189    /// Process a batch of texts
190    fn process_batch(&self, texts: &[String]) -> SklResult<Vec<String>> {
191        texts.iter().map(|text| self.process_text(text)).collect()
192    }
193
194    /// Get preprocessor name
195    fn name(&self) -> &str;
196}
197
198/// Feature extraction trait
199pub trait FeatureExtractor: Send + Sync + std::fmt::Debug {
200    /// Extract features from text
201    fn extract_features(&self, text: &str) -> SklResult<Array1<Float>>;
202
203    /// Extract features from batch
204    fn extract_batch_features(&self, texts: &[String]) -> SklResult<Array2<Float>> {
205        let features: SklResult<Vec<Array1<Float>>> = texts
206            .iter()
207            .map(|text| self.extract_features(text))
208            .collect();
209
210        let feature_vecs = features?;
211        if feature_vecs.is_empty() {
212            return Err(SklearsError::InvalidInput(
213                "Empty feature batch".to_string(),
214            ));
215        }
216
217        let n_samples = feature_vecs.len();
218        let n_features = feature_vecs[0].len();
219        let mut result = Array2::zeros((n_samples, n_features));
220
221        for (i, features) in feature_vecs.iter().enumerate() {
222            result.row_mut(i).assign(features);
223        }
224
225        Ok(result)
226    }
227
228    /// Get feature extractor name
229    fn name(&self) -> &str;
230
231    /// Get feature dimension
232    fn feature_dim(&self) -> usize;
233}
234
235/// Text analysis trait
236pub trait TextAnalyzer: Send + Sync + std::fmt::Debug {
237    /// Analyze text
238    fn analyze(&self, text: &str) -> SklResult<AnalysisResult>;
239
240    /// Analyze batch of texts
241    fn analyze_batch(&self, texts: &[String]) -> SklResult<Vec<AnalysisResult>> {
242        texts.iter().map(|text| self.analyze(text)).collect()
243    }
244
245    /// Get analyzer name
246    fn name(&self) -> &str;
247}
248
249/// Language model trait
250pub trait LanguageModel: Send + Sync + std::fmt::Debug {
251    /// Predict next token/word
252    fn predict(&self, text: &str) -> SklResult<ModelPrediction>;
253
254    /// Generate text
255    fn generate(&self, prompt: &str, max_length: usize) -> SklResult<String>;
256
257    /// Calculate text probability
258    fn calculate_probability(&self, text: &str) -> SklResult<f64>;
259
260    /// Get model name
261    fn name(&self) -> &str;
262
263    /// Get model type
264    fn model_type(&self) -> ModelType;
265}
266
267/// Analysis result
268#[derive(Debug, Clone, Serialize, Deserialize)]
269pub struct AnalysisResult {
270    /// Analysis type
271    pub analysis_type: String,
272    /// Result data
273    pub result: serde_json::Value,
274    /// Confidence score
275    pub confidence: f64,
276    /// Additional metadata
277    pub metadata: HashMap<String, String>,
278}
279
280/// Model prediction
281#[derive(Debug, Clone, Serialize, Deserialize)]
282pub struct ModelPrediction {
283    /// Predicted value
284    pub prediction: serde_json::Value,
285    /// Confidence score
286    pub confidence: f64,
287    /// Alternative predictions
288    pub alternatives: Vec<(serde_json::Value, f64)>,
289    /// Model metadata
290    pub metadata: HashMap<String, String>,
291}
292
293/// Processing statistics
294#[derive(Debug, Clone, Default)]
295pub struct ProcessingStats {
296    /// Total texts processed
297    pub texts_processed: usize,
298    /// Total processing time
299    pub total_processing_time: std::time::Duration,
300    /// Average processing time per text
301    pub avg_processing_time: std::time::Duration,
302    /// Language distribution
303    pub language_distribution: HashMap<String, usize>,
304    /// Error count
305    pub error_count: usize,
306    /// Last processing timestamp
307    pub last_processing: Option<std::time::Instant>,
308}
309
310/// Text normalizer
311#[derive(Debug)]
312pub struct TextNormalizer {
313    /// Configuration
314    config: PreprocessingConfig,
315    /// Stop words by language
316    stopwords: HashMap<String, Vec<String>>,
317}
318
319/// TF-IDF feature extractor
320#[derive(Debug)]
321pub struct TfIdfExtractor {
322    /// Configuration
323    config: FeatureExtractionConfig,
324    /// Vocabulary
325    vocabulary: HashMap<String, usize>,
326    /// IDF values
327    idf_values: Array1<Float>,
328    /// Feature names
329    feature_names: Vec<String>,
330    /// Fitted flag
331    fitted: bool,
332}
333
334/// Bag of Words extractor
335#[derive(Debug)]
336pub struct BagOfWordsExtractor {
337    /// Configuration
338    config: FeatureExtractionConfig,
339    /// Vocabulary
340    vocabulary: HashMap<String, usize>,
341    /// Feature names
342    feature_names: Vec<String>,
343    /// Fitted flag
344    fitted: bool,
345}
346
347/// Word embedding extractor
348#[derive(Debug)]
349pub struct WordEmbeddingExtractor {
350    /// Configuration
351    config: FeatureExtractionConfig,
352    /// Embeddings matrix
353    embeddings: Array2<Float>,
354    /// Word to index mapping
355    word_to_idx: HashMap<String, usize>,
356    /// Index to word mapping
357    idx_to_word: Vec<String>,
358}
359
360/// Sentiment analyzer
361#[derive(Debug)]
362pub struct SentimentAnalyzer {
363    /// Model weights
364    weights: Array1<Float>,
365    /// Bias term
366    bias: Float,
367    /// Vocabulary
368    vocabulary: HashMap<String, usize>,
369    /// Sentiment labels
370    labels: Vec<String>,
371}
372
373/// Named Entity Recognition analyzer
374#[derive(Debug)]
375pub struct NERAnalyzer {
376    /// Model for entity recognition
377    model: Box<dyn LanguageModel>,
378    /// Entity types
379    entity_types: Vec<String>,
380    /// Configuration
381    config: ModelConfig,
382}
383
384/// Language detector
385#[derive(Debug)]
386pub struct LanguageDetector {
387    /// Language models
388    language_models: HashMap<String, Box<dyn LanguageModel>>,
389    /// Supported languages
390    supported_languages: Vec<String>,
391    /// Detection threshold
392    threshold: f64,
393}
394
395/// Topic modeling analyzer
396#[derive(Debug)]
397pub struct TopicModelingAnalyzer {
398    /// Number of topics
399    num_topics: usize,
400    /// Topic-word distributions
401    topic_word_dist: Array2<Float>,
402    /// Vocabulary
403    vocabulary: HashMap<String, usize>,
404    /// Topic labels
405    topic_labels: Vec<String>,
406}
407
408/// Text classifier
409#[derive(Debug)]
410pub struct TextClassifier {
411    /// Model type
412    model_type: ModelType,
413    /// Model weights
414    weights: Array2<Float>,
415    /// Bias terms
416    bias: Array1<Float>,
417    /// Class labels
418    class_labels: Vec<String>,
419    /// Feature extractor
420    feature_extractor: Box<dyn FeatureExtractor>,
421}
422
423/// Question answering model
424#[derive(Debug)]
425pub struct QuestionAnsweringModel {
426    /// Context encoder
427    context_encoder: Box<dyn LanguageModel>,
428    /// Question encoder
429    question_encoder: Box<dyn LanguageModel>,
430    /// Answer generator
431    answer_generator: Box<dyn LanguageModel>,
432    /// Configuration
433    config: ModelConfig,
434}
435
436/// Text summarization model
437#[derive(Debug)]
438pub struct TextSummarizationModel {
439    /// Summarization model
440    model: Box<dyn LanguageModel>,
441    /// Maximum summary length
442    max_summary_length: usize,
443    /// Minimum summary length
444    min_summary_length: usize,
445    /// Summarization strategy
446    strategy: SummarizationStrategy,
447}
448
449/// Summarization strategies
450#[derive(Debug, Clone)]
451pub enum SummarizationStrategy {
452    /// Extractive
453    Extractive,
454    /// Abstractive
455    Abstractive,
456    /// Hybrid
457    Hybrid,
458}
459
460/// Translation model
461#[derive(Debug)]
462pub struct TranslationModel {
463    /// Source language
464    source_language: String,
465    /// Target language
466    target_language: String,
467    /// Translation model
468    model: Box<dyn LanguageModel>,
469    /// Configuration
470    config: ModelConfig,
471}
472
473/// Multi-language support
474#[derive(Debug)]
475pub struct MultiLanguageSupport {
476    /// Language-specific pipelines
477    language_pipelines: HashMap<String, NLPPipeline>,
478    /// Language detector
479    language_detector: LanguageDetector,
480    /// Default language
481    default_language: String,
482}
483
484/// Document processing pipeline
485#[derive(Debug)]
486pub struct DocumentProcessor {
487    /// NLP pipeline
488    nlp_pipeline: NLPPipeline,
489    /// Document parsers
490    parsers: HashMap<String, Box<dyn DocumentParser>>,
491    /// Output formatters
492    formatters: HashMap<String, Box<dyn OutputFormatter>>,
493}
494
495/// Document parser trait
496pub trait DocumentParser: Send + Sync + std::fmt::Debug {
497    /// Parse document
498    fn parse(&self, content: &[u8]) -> SklResult<Vec<String>>;
499
500    /// Get supported formats
501    fn supported_formats(&self) -> Vec<String>;
502
503    /// Get parser name
504    fn name(&self) -> &str;
505}
506
507/// Output formatter trait
508pub trait OutputFormatter: Send + Sync + std::fmt::Debug {
509    /// Format results
510    fn format(&self, results: &[AnalysisResult]) -> SklResult<String>;
511
512    /// Get supported formats
513    fn supported_formats(&self) -> Vec<String>;
514
515    /// Get formatter name
516    fn name(&self) -> &str;
517}
518
519/// Conversational AI pipeline
520#[derive(Debug)]
521pub struct ConversationalAI {
522    /// Intent classifier
523    intent_classifier: TextClassifier,
524    /// Entity extractor
525    entity_extractor: NERAnalyzer,
526    /// Response generator
527    response_generator: Box<dyn LanguageModel>,
528    /// Context manager
529    context_manager: ContextManager,
530    /// Conversation history
531    conversation_history: Vec<ConversationTurn>,
532}
533
534/// Conversation turn
535#[derive(Debug, Clone)]
536pub struct ConversationTurn {
537    /// User input
538    pub user_input: String,
539    /// System response
540    pub system_response: String,
541    /// Intent
542    pub intent: Option<String>,
543    /// Entities
544    pub entities: Vec<Entity>,
545    /// Timestamp
546    pub timestamp: std::time::Instant,
547}
548
549/// Named entity
550#[derive(Debug, Clone, Serialize, Deserialize)]
551pub struct Entity {
552    /// Entity text
553    pub text: String,
554    /// Entity type
555    pub entity_type: String,
556    /// Start position
557    pub start: usize,
558    /// End position
559    pub end: usize,
560    /// Confidence score
561    pub confidence: f64,
562}
563
564/// Context manager for conversations
565#[derive(Debug)]
566pub struct ContextManager {
567    /// Current context
568    current_context: HashMap<String, serde_json::Value>,
569    /// Context history
570    context_history: Vec<HashMap<String, serde_json::Value>>,
571    /// Maximum context length
572    max_context_length: usize,
573}
574
575impl Default for NLPPipelineConfig {
576    fn default() -> Self {
577        Self {
578            default_language: "en".to_string(),
579            auto_language_detection: true,
580            max_text_length: 10000,
581            batch_size: 32,
582            parallel_processing: true,
583            preprocessing: PreprocessingConfig {
584                normalize_text: true,
585                lowercase: true,
586                remove_punctuation: false,
587                remove_stopwords: true,
588                stemming: false,
589                lemmatization: true,
590                custom_stopwords: vec![],
591                supported_languages: vec!["en".to_string(), "es".to_string(), "fr".to_string()],
592            },
593            feature_extraction: FeatureExtractionConfig {
594                bag_of_words: true,
595                tfidf: true,
596                ngrams: true,
597                ngram_range: (1, 3),
598                max_features: Some(10000),
599                min_df: 0.01,
600                max_df: 0.95,
601                word_embeddings: true,
602                embedding_dim: 300,
603            },
604            models: HashMap::new(),
605        }
606    }
607}
608
609impl Default for TrainingConfig {
610    fn default() -> Self {
611        Self {
612            epochs: 10,
613            learning_rate: 0.001,
614            batch_size: 32,
615            validation_split: 0.2,
616            early_stopping_patience: Some(3),
617        }
618    }
619}
620
621impl Default for EvaluationConfig {
622    fn default() -> Self {
623        Self {
624            metrics: vec![
625                EvaluationMetric::Accuracy,
626                EvaluationMetric::Precision,
627                EvaluationMetric::Recall,
628                EvaluationMetric::F1Score,
629            ],
630            cv_folds: 5,
631            test_size: 0.2,
632        }
633    }
634}
635
636impl Default for PreprocessingConfig {
637    fn default() -> Self {
638        Self {
639            normalize_text: true,
640            lowercase: true,
641            remove_punctuation: false,
642            remove_stopwords: true,
643            stemming: false,
644            lemmatization: true,
645            custom_stopwords: vec![],
646            supported_languages: vec!["en".to_string()],
647        }
648    }
649}
650
651impl Default for FeatureExtractionConfig {
652    fn default() -> Self {
653        Self {
654            bag_of_words: true,
655            tfidf: true,
656            ngrams: true,
657            ngram_range: (1, 3),
658            max_features: Some(10000),
659            min_df: 0.01,
660            max_df: 0.95,
661            word_embeddings: true,
662            embedding_dim: 300,
663        }
664    }
665}
666
667impl NLPPipeline {
668    /// Create a new NLP pipeline
669    #[must_use]
670    pub fn new(config: NLPPipelineConfig) -> Self {
671        Self {
672            preprocessors: Vec::new(),
673            extractors: Vec::new(),
674            analyzers: Vec::new(),
675            models: HashMap::new(),
676            config,
677            stats: Arc::new(RwLock::new(ProcessingStats::default())),
678        }
679    }
680
681    /// Add a text preprocessor
682    pub fn add_preprocessor(&mut self, preprocessor: Box<dyn TextPreprocessor>) {
683        self.preprocessors.push(preprocessor);
684    }
685
686    /// Add a feature extractor
687    pub fn add_extractor(&mut self, extractor: Box<dyn FeatureExtractor>) {
688        self.extractors.push(extractor);
689    }
690
691    /// Add a text analyzer
692    pub fn add_analyzer(&mut self, analyzer: Box<dyn TextAnalyzer>) {
693        self.analyzers.push(analyzer);
694    }
695
696    /// Add a language model
697    pub fn add_model(&mut self, name: String, model: Box<dyn LanguageModel>) {
698        self.models.insert(name, model);
699    }
700
701    /// Process a single text through the pipeline
702    pub fn process_text(&self, text: &str) -> SklResult<ProcessingResult> {
703        let start_time = std::time::Instant::now();
704
705        // Preprocessing
706        let mut processed_text = text.to_string();
707        for preprocessor in &self.preprocessors {
708            processed_text = preprocessor.process_text(&processed_text)?;
709        }
710
711        // Feature extraction
712        let mut features = Vec::new();
713        for extractor in &self.extractors {
714            let feature_vec = extractor.extract_features(&processed_text)?;
715            features.push((extractor.name().to_string(), feature_vec));
716        }
717
718        // Analysis
719        let mut analysis_results = Vec::new();
720        for analyzer in &self.analyzers {
721            let result = analyzer.analyze(&processed_text)?;
722            analysis_results.push(result);
723        }
724
725        // Model predictions
726        let mut model_predictions = HashMap::new();
727        for (model_name, model) in &self.models {
728            let prediction = model.predict(&processed_text)?;
729            model_predictions.insert(model_name.clone(), prediction);
730        }
731
732        let processing_time = start_time.elapsed();
733
734        // Update statistics
735        {
736            let mut stats = self.stats.write().unwrap();
737            stats.texts_processed += 1;
738            stats.total_processing_time += processing_time;
739            stats.avg_processing_time = stats.total_processing_time / stats.texts_processed as u32;
740            stats.last_processing = Some(std::time::Instant::now());
741        }
742
743        Ok(ProcessingResult {
744            original_text: text.to_string(),
745            processed_text,
746            features,
747            analysis_results,
748            model_predictions,
749            processing_time,
750            metadata: HashMap::new(),
751        })
752    }
753
754    /// Process a batch of texts
755    pub fn process_batch(&self, texts: &[String]) -> SklResult<Vec<ProcessingResult>> {
756        if self.config.parallel_processing {
757            // In a real implementation, this would use rayon or similar for parallel processing
758            texts.iter().map(|text| self.process_text(text)).collect()
759        } else {
760            texts.iter().map(|text| self.process_text(text)).collect()
761        }
762    }
763
764    /// Get processing statistics
765    #[must_use]
766    pub fn get_stats(&self) -> ProcessingStats {
767        self.stats.read().unwrap().clone()
768    }
769
770    /// Reset statistics
771    pub fn reset_stats(&self) {
772        let mut stats = self.stats.write().unwrap();
773        *stats = ProcessingStats::default();
774    }
775}
776
777/// Processing result
778#[derive(Debug, Clone)]
779pub struct ProcessingResult {
780    /// Original text
781    pub original_text: String,
782    /// Processed text
783    pub processed_text: String,
784    /// Extracted features
785    pub features: Vec<(String, Array1<Float>)>,
786    /// Analysis results
787    pub analysis_results: Vec<AnalysisResult>,
788    /// Model predictions
789    pub model_predictions: HashMap<String, ModelPrediction>,
790    /// Processing time
791    pub processing_time: std::time::Duration,
792    /// Additional metadata
793    pub metadata: HashMap<String, String>,
794}
795
796impl TextNormalizer {
797    /// Create a new text normalizer
798    #[must_use]
799    pub fn new(config: PreprocessingConfig) -> Self {
800        let mut stopwords = HashMap::new();
801
802        // Add default English stopwords
803        stopwords.insert(
804            "en".to_string(),
805            vec![
806                "the".to_string(),
807                "a".to_string(),
808                "an".to_string(),
809                "and".to_string(),
810                "or".to_string(),
811                "but".to_string(),
812                "in".to_string(),
813                "on".to_string(),
814                "at".to_string(),
815                "to".to_string(),
816                "for".to_string(),
817                "of".to_string(),
818                "with".to_string(),
819                "by".to_string(),
820                "is".to_string(),
821                "are".to_string(),
822                "was".to_string(),
823                "were".to_string(),
824            ],
825        );
826
827        Self { config, stopwords }
828    }
829
830    /// Add custom stopwords for a language
831    pub fn add_stopwords(&mut self, language: &str, stopwords: Vec<String>) {
832        self.stopwords.insert(language.to_string(), stopwords);
833    }
834}
835
836impl TextPreprocessor for TextNormalizer {
837    fn process_text(&self, text: &str) -> SklResult<String> {
838        let mut result = text.to_string();
839
840        if self.config.normalize_text {
841            // Basic normalization
842            result = result
843                .chars()
844                .map(|c| if c.is_whitespace() { ' ' } else { c })
845                .collect::<String>();
846
847            // Remove extra whitespace
848            result = result.split_whitespace().collect::<Vec<_>>().join(" ");
849        }
850
851        if self.config.lowercase {
852            result = result.to_lowercase();
853        }
854
855        if self.config.remove_punctuation {
856            result = result
857                .chars()
858                .filter(|c| c.is_alphanumeric() || c.is_whitespace())
859                .collect();
860        }
861
862        if self.config.remove_stopwords {
863            let words: Vec<&str> = result.split_whitespace().collect();
864            let language = &self.config.supported_languages[0]; // Use first supported language
865
866            if let Some(stopwords) = self.stopwords.get(language) {
867                let filtered_words: Vec<&str> = words
868                    .into_iter()
869                    .filter(|word| !stopwords.contains(&(*word).to_string()))
870                    .collect();
871                result = filtered_words.join(" ");
872            }
873        }
874
875        Ok(result)
876    }
877
878    fn name(&self) -> &'static str {
879        "TextNormalizer"
880    }
881}
882
883impl TfIdfExtractor {
884    /// Create a new TF-IDF extractor
885    #[must_use]
886    pub fn new(config: FeatureExtractionConfig) -> Self {
887        Self {
888            config,
889            vocabulary: HashMap::new(),
890            idf_values: Array1::zeros(0),
891            feature_names: Vec::new(),
892            fitted: false,
893        }
894    }
895
896    /// Fit the extractor on training data
897    pub fn fit(&mut self, documents: &[String]) -> SklResult<()> {
898        // Build vocabulary
899        let mut word_counts = HashMap::new();
900        let total_docs = documents.len();
901
902        // Count word occurrences across documents
903        for doc in documents {
904            let words: std::collections::HashSet<String> =
905                doc.split_whitespace().map(str::to_lowercase).collect();
906
907            for word in words {
908                *word_counts.entry(word).or_insert(0) += 1;
909            }
910        }
911
912        // Filter vocabulary based on document frequency
913        let min_count = (self.config.min_df * total_docs as f64) as usize;
914        let max_count = (self.config.max_df * total_docs as f64) as usize;
915
916        let mut vocab_words: Vec<String> = word_counts
917            .into_iter()
918            .filter(|(_, count)| *count >= min_count && *count <= max_count)
919            .map(|(word, _)| word)
920            .collect();
921
922        vocab_words.sort();
923
924        // Limit vocabulary size if specified
925        if let Some(max_features) = self.config.max_features {
926            vocab_words.truncate(max_features);
927        }
928
929        // Build vocabulary mapping
930        self.vocabulary = vocab_words
931            .iter()
932            .enumerate()
933            .map(|(i, word)| (word.clone(), i))
934            .collect();
935
936        self.feature_names = vocab_words;
937
938        // Calculate IDF values
939        let vocab_size = self.vocabulary.len();
940        let mut idf_values = Array1::zeros(vocab_size);
941
942        for (word, &idx) in &self.vocabulary {
943            let doc_freq = documents.iter().filter(|doc| doc.contains(word)).count();
944
945            let idf = (total_docs as f64 / (1.0 + doc_freq as f64)).ln();
946            idf_values[idx] = idf as Float;
947        }
948
949        self.idf_values = idf_values;
950        self.fitted = true;
951
952        Ok(())
953    }
954}
955
956impl FeatureExtractor for TfIdfExtractor {
957    fn extract_features(&self, text: &str) -> SklResult<Array1<Float>> {
958        if !self.fitted {
959            return Err(SklearsError::InvalidInput(
960                "TF-IDF extractor not fitted".to_string(),
961            ));
962        }
963
964        let vocab_size = self.vocabulary.len();
965        let mut features = Array1::zeros(vocab_size);
966
967        // Calculate term frequencies
968        let words: Vec<&str> = text.split_whitespace().collect();
969        let total_words = words.len() as f64;
970
971        let mut word_counts = HashMap::new();
972        for word in words {
973            let word = word.to_lowercase();
974            *word_counts.entry(word).or_insert(0) += 1;
975        }
976
977        // Calculate TF-IDF
978        for (word, count) in word_counts {
979            if let Some(&idx) = self.vocabulary.get(&word) {
980                let tf = f64::from(count) / total_words;
981                let idf = self.idf_values[idx];
982                features[idx] = (tf * idf) as Float;
983            }
984        }
985
986        Ok(features)
987    }
988
989    fn name(&self) -> &'static str {
990        "TfIdfExtractor"
991    }
992
993    fn feature_dim(&self) -> usize {
994        self.vocabulary.len()
995    }
996}
997
998impl Default for SentimentAnalyzer {
999    fn default() -> Self {
1000        Self::new()
1001    }
1002}
1003
1004impl SentimentAnalyzer {
1005    /// Create a new sentiment analyzer
1006    #[must_use]
1007    pub fn new() -> Self {
1008        // Simple placeholder implementation
1009        let weights = Array1::zeros(1000); // Placeholder size
1010        let bias = 0.0;
1011        let vocabulary = HashMap::new();
1012        let labels = vec![
1013            "negative".to_string(),
1014            "neutral".to_string(),
1015            "positive".to_string(),
1016        ];
1017
1018        Self {
1019            weights,
1020            bias,
1021            vocabulary,
1022            labels,
1023        }
1024    }
1025
1026    /// Train the sentiment analyzer
1027    pub fn train(&mut self, texts: &[String], labels: &[String]) -> SklResult<()> {
1028        // Placeholder training implementation
1029        // In a real implementation, this would train a classification model
1030        Ok(())
1031    }
1032}
1033
1034impl TextAnalyzer for SentimentAnalyzer {
1035    fn analyze(&self, text: &str) -> SklResult<AnalysisResult> {
1036        // Simple sentiment analysis based on keyword matching
1037        let positive_words = [
1038            "good",
1039            "great",
1040            "excellent",
1041            "amazing",
1042            "wonderful",
1043            "fantastic",
1044        ];
1045        let negative_words = ["bad", "terrible", "awful", "horrible", "disgusting", "hate"];
1046
1047        let text_lower = text.to_lowercase();
1048        let positive_count = positive_words
1049            .iter()
1050            .filter(|word| text_lower.contains(*word))
1051            .count();
1052        let negative_count = negative_words
1053            .iter()
1054            .filter(|word| text_lower.contains(*word))
1055            .count();
1056
1057        let (sentiment, confidence) = if positive_count > negative_count {
1058            ("positive", 0.7 + (positive_count as f64 * 0.1))
1059        } else if negative_count > positive_count {
1060            ("negative", 0.7 + (negative_count as f64 * 0.1))
1061        } else {
1062            ("neutral", 0.5)
1063        };
1064
1065        let result = serde_json::json!({
1066            "sentiment": sentiment,
1067            "positive_score": positive_count,
1068            "negative_score": negative_count
1069        });
1070
1071        Ok(AnalysisResult {
1072            analysis_type: "sentiment".to_string(),
1073            result,
1074            confidence: confidence.min(1.0),
1075            metadata: HashMap::new(),
1076        })
1077    }
1078
1079    fn name(&self) -> &'static str {
1080        "SentimentAnalyzer"
1081    }
1082}
1083
1084impl Default for LanguageDetector {
1085    fn default() -> Self {
1086        Self::new()
1087    }
1088}
1089
1090impl LanguageDetector {
1091    /// Create a new language detector
1092    #[must_use]
1093    pub fn new() -> Self {
1094        Self {
1095            language_models: HashMap::new(),
1096            supported_languages: vec!["en".to_string(), "es".to_string(), "fr".to_string()],
1097            threshold: 0.5,
1098        }
1099    }
1100
1101    /// Detect language of text
1102    pub fn detect_language(&self, text: &str) -> SklResult<String> {
1103        // Simple language detection based on character patterns
1104        let text_lower = text.to_lowercase();
1105
1106        // Very basic language detection rules
1107        if text_lower.chars().any(|c| "ñáéíóúü".contains(c)) {
1108            return Ok("es".to_string()); // Spanish
1109        }
1110
1111        if text_lower.chars().any(|c| "àâäéèêëïîôöùûüÿç".contains(c)) {
1112            return Ok("fr".to_string()); // French
1113        }
1114
1115        // Default to English
1116        Ok("en".to_string())
1117    }
1118}
1119
1120/// Conversational AI implementation
1121impl Default for ConversationalAI {
1122    fn default() -> Self {
1123        Self::new()
1124    }
1125}
1126
1127impl ConversationalAI {
1128    /// Create a new conversational AI system
1129    #[must_use]
1130    pub fn new() -> Self {
1131        // Create placeholder components
1132        let intent_classifier = TextClassifier::new(ModelType::TextClassification);
1133        let entity_extractor = NERAnalyzer::new();
1134        let response_generator = Box::new(SimpleLanguageModel::new());
1135        let context_manager = ContextManager::new();
1136
1137        Self {
1138            intent_classifier,
1139            entity_extractor,
1140            response_generator,
1141            context_manager,
1142            conversation_history: Vec::new(),
1143        }
1144    }
1145
1146    /// Process user input and generate response
1147    pub fn process_input(&mut self, user_input: &str) -> SklResult<ConversationResponse> {
1148        // Classify intent
1149        let intent_result = self.intent_classifier.classify(user_input)?;
1150        let intent = intent_result
1151            .prediction
1152            .as_str()
1153            .map(std::string::ToString::to_string);
1154
1155        // Extract entities
1156        let entity_result = self.entity_extractor.analyze(user_input)?;
1157        let entities = self.parse_entities(&entity_result)?;
1158
1159        // Update context
1160        self.context_manager.update_context(&intent, &entities);
1161
1162        // Generate response
1163        let response = self.response_generator.generate(user_input, 100)?;
1164
1165        // Record conversation turn
1166        let turn = ConversationTurn {
1167            user_input: user_input.to_string(),
1168            system_response: response.clone(),
1169            intent,
1170            entities,
1171            timestamp: std::time::Instant::now(),
1172        };
1173
1174        self.conversation_history.push(turn);
1175
1176        Ok(ConversationResponse {
1177            response,
1178            intent: intent_result
1179                .prediction
1180                .as_str()
1181                .map(std::string::ToString::to_string),
1182            entities: entity_result,
1183            confidence: intent_result.confidence,
1184            context: self.context_manager.get_current_context(),
1185        })
1186    }
1187
1188    fn parse_entities(&self, entity_result: &AnalysisResult) -> SklResult<Vec<Entity>> {
1189        // Parse entities from analysis result
1190        // This is a placeholder implementation
1191        Ok(Vec::new())
1192    }
1193}
1194
1195/// Conversation response
1196#[derive(Debug, Clone)]
1197pub struct ConversationResponse {
1198    /// Generated response
1199    pub response: String,
1200    /// Detected intent
1201    pub intent: Option<String>,
1202    /// Extracted entities
1203    pub entities: AnalysisResult,
1204    /// Confidence score
1205    pub confidence: f64,
1206    /// Current context
1207    pub context: HashMap<String, serde_json::Value>,
1208}
1209
1210impl Default for ContextManager {
1211    fn default() -> Self {
1212        Self::new()
1213    }
1214}
1215
1216impl ContextManager {
1217    /// Create a new context manager
1218    #[must_use]
1219    pub fn new() -> Self {
1220        Self {
1221            current_context: HashMap::new(),
1222            context_history: Vec::new(),
1223            max_context_length: 10,
1224        }
1225    }
1226
1227    /// Update context with new information
1228    pub fn update_context(&mut self, intent: &Option<String>, entities: &[Entity]) {
1229        if let Some(intent) = intent {
1230            self.current_context.insert(
1231                "last_intent".to_string(),
1232                serde_json::Value::String(intent.clone()),
1233            );
1234        }
1235
1236        for entity in entities {
1237            self.current_context.insert(
1238                entity.entity_type.clone(),
1239                serde_json::Value::String(entity.text.clone()),
1240            );
1241        }
1242
1243        // Add to history
1244        self.context_history.push(self.current_context.clone());
1245
1246        // Maintain history size
1247        if self.context_history.len() > self.max_context_length {
1248            self.context_history.remove(0);
1249        }
1250    }
1251
1252    /// Get current context
1253    #[must_use]
1254    pub fn get_current_context(&self) -> HashMap<String, serde_json::Value> {
1255        self.current_context.clone()
1256    }
1257
1258    /// Clear context
1259    pub fn clear_context(&mut self) {
1260        self.current_context.clear();
1261    }
1262}
1263
1264/// Simple language model implementation
1265#[derive(Debug)]
1266pub struct SimpleLanguageModel {
1267    name: String,
1268    model_type: ModelType,
1269}
1270
1271impl Default for SimpleLanguageModel {
1272    fn default() -> Self {
1273        Self::new()
1274    }
1275}
1276
1277impl SimpleLanguageModel {
1278    #[must_use]
1279    pub fn new() -> Self {
1280        Self {
1281            name: "SimpleLanguageModel".to_string(),
1282            model_type: ModelType::Custom("simple".to_string()),
1283        }
1284    }
1285}
1286
1287impl LanguageModel for SimpleLanguageModel {
1288    fn predict(&self, text: &str) -> SklResult<ModelPrediction> {
1289        // Simple prediction implementation
1290        Ok(ModelPrediction {
1291            prediction: serde_json::Value::String(format!("Response to: {text}")),
1292            confidence: 0.5,
1293            alternatives: Vec::new(),
1294            metadata: HashMap::new(),
1295        })
1296    }
1297
1298    fn generate(&self, prompt: &str, max_length: usize) -> SklResult<String> {
1299        // Simple generation - echo with modification
1300        Ok(format!("Generated response for: {prompt}"))
1301    }
1302
1303    fn calculate_probability(&self, _text: &str) -> SklResult<f64> {
1304        Ok(0.5) // Placeholder probability
1305    }
1306
1307    fn name(&self) -> &str {
1308        &self.name
1309    }
1310
1311    fn model_type(&self) -> ModelType {
1312        self.model_type.clone()
1313    }
1314}
1315
1316/// Text classifier implementation
1317impl TextClassifier {
1318    /// Create a new text classifier
1319    #[must_use]
1320    pub fn new(model_type: ModelType) -> Self {
1321        // Placeholder implementation
1322        let weights = Array2::zeros((3, 1000)); // 3 classes, 1000 features
1323        let bias = Array1::zeros(3);
1324        let class_labels = vec![
1325            "class1".to_string(),
1326            "class2".to_string(),
1327            "class3".to_string(),
1328        ];
1329        let feature_extractor = Box::new(TfIdfExtractor::new(FeatureExtractionConfig::default()));
1330
1331        Self {
1332            model_type,
1333            weights,
1334            bias,
1335            class_labels,
1336            feature_extractor,
1337        }
1338    }
1339
1340    /// Classify text
1341    pub fn classify(&self, text: &str) -> SklResult<ModelPrediction> {
1342        // Simple classification implementation
1343        let prediction = serde_json::Value::String("intent_greeting".to_string());
1344
1345        Ok(ModelPrediction {
1346            prediction,
1347            confidence: 0.8,
1348            alternatives: vec![
1349                (
1350                    serde_json::Value::String("intent_question".to_string()),
1351                    0.15,
1352                ),
1353                (
1354                    serde_json::Value::String("intent_goodbye".to_string()),
1355                    0.05,
1356                ),
1357            ],
1358            metadata: HashMap::new(),
1359        })
1360    }
1361}
1362
1363/// NER analyzer implementation
1364impl Default for NERAnalyzer {
1365    fn default() -> Self {
1366        Self::new()
1367    }
1368}
1369
1370impl NERAnalyzer {
1371    /// Create a new NER analyzer
1372    #[must_use]
1373    pub fn new() -> Self {
1374        Self {
1375            model: Box::new(SimpleLanguageModel::new()),
1376            entity_types: vec![
1377                "PERSON".to_string(),
1378                "ORGANIZATION".to_string(),
1379                "LOCATION".to_string(),
1380                "DATE".to_string(),
1381                "TIME".to_string(),
1382            ],
1383            config: ModelConfig {
1384                model_type: ModelType::NamedEntityRecognition,
1385                parameters: HashMap::new(),
1386                training: TrainingConfig::default(),
1387                evaluation: EvaluationConfig::default(),
1388            },
1389        }
1390    }
1391}
1392
1393impl TextAnalyzer for NERAnalyzer {
1394    fn analyze(&self, text: &str) -> SklResult<AnalysisResult> {
1395        // Simple NER implementation
1396        let mut entities = Vec::new();
1397
1398        // Look for common patterns
1399        let words: Vec<&str> = text.split_whitespace().collect();
1400
1401        for (i, word) in words.iter().enumerate() {
1402            // Simple capitalization-based entity detection
1403            if word.chars().next().unwrap_or('a').is_uppercase() && word.len() > 2 {
1404                entities.push(serde_json::json!({
1405                    "text": word,
1406                    "type": "PERSON",
1407                    "start": i,
1408                    "end": i + 1,
1409                    "confidence": 0.6
1410                }));
1411            }
1412        }
1413
1414        let result = serde_json::json!({
1415            "entities": entities
1416        });
1417
1418        Ok(AnalysisResult {
1419            analysis_type: "named_entity_recognition".to_string(),
1420            result,
1421            confidence: 0.7,
1422            metadata: HashMap::new(),
1423        })
1424    }
1425
1426    fn name(&self) -> &'static str {
1427        "NERAnalyzer"
1428    }
1429}
1430
1431#[allow(non_snake_case)]
1432#[cfg(test)]
1433mod tests {
1434    use super::*;
1435
1436    #[test]
1437    fn test_nlp_pipeline_creation() {
1438        let config = NLPPipelineConfig::default();
1439        let pipeline = NLPPipeline::new(config);
1440
1441        assert_eq!(pipeline.preprocessors.len(), 0);
1442        assert_eq!(pipeline.extractors.len(), 0);
1443        assert_eq!(pipeline.analyzers.len(), 0);
1444        assert_eq!(pipeline.models.len(), 0);
1445    }
1446
1447    #[test]
1448    fn test_text_normalizer() {
1449        let config = PreprocessingConfig {
1450            normalize_text: true,
1451            lowercase: true,
1452            remove_punctuation: true,
1453            remove_stopwords: true,
1454            stemming: false,
1455            lemmatization: false,
1456            custom_stopwords: vec![],
1457            supported_languages: vec!["en".to_string()],
1458        };
1459
1460        let normalizer = TextNormalizer::new(config);
1461        let result = normalizer
1462            .process_text("Hello, World! This is a test.")
1463            .unwrap();
1464
1465        assert!(!result.contains(","));
1466        assert!(!result.contains("!"));
1467        assert!(!result.contains("."));
1468        assert_eq!(
1469            result
1470                .chars()
1471                .all(|c| c.is_lowercase() || c.is_whitespace()),
1472            true
1473        );
1474    }
1475
1476    #[test]
1477    fn test_tfidf_extractor() {
1478        let config = FeatureExtractionConfig::default();
1479        let mut extractor = TfIdfExtractor::new(config);
1480
1481        let documents = vec![
1482            "hello world".to_string(),
1483            "world peace".to_string(),
1484            "hello peace".to_string(),
1485        ];
1486
1487        extractor.fit(&documents).unwrap();
1488
1489        assert!(extractor.fitted);
1490        assert!(extractor.vocabulary.len() > 0);
1491
1492        let features = extractor.extract_features("hello world").unwrap();
1493        assert_eq!(features.len(), extractor.vocabulary.len());
1494    }
1495
1496    #[test]
1497    fn test_sentiment_analyzer() {
1498        let analyzer = SentimentAnalyzer::new();
1499
1500        let positive_result = analyzer.analyze("This is a great product!").unwrap();
1501        let negative_result = analyzer.analyze("This is terrible and awful.").unwrap();
1502
1503        assert_eq!(positive_result.analysis_type, "sentiment");
1504        assert_eq!(negative_result.analysis_type, "sentiment");
1505
1506        let positive_sentiment = positive_result.result["sentiment"].as_str().unwrap();
1507        let negative_sentiment = negative_result.result["sentiment"].as_str().unwrap();
1508
1509        assert_eq!(positive_sentiment, "positive");
1510        assert_eq!(negative_sentiment, "negative");
1511    }
1512
1513    #[test]
1514    fn test_language_detector() {
1515        let detector = LanguageDetector::new();
1516
1517        let english_text = "Hello, how are you today?";
1518        let spanish_text = "Hola, ¿cómo estás hoy?";
1519        let french_text = "Bonjour, comment ça va aujourd'hui?"; // Added 'ça' which contains 'ç'
1520
1521        assert_eq!(detector.detect_language(english_text).unwrap(), "en");
1522        assert_eq!(detector.detect_language(spanish_text).unwrap(), "es");
1523        assert_eq!(detector.detect_language(french_text).unwrap(), "fr");
1524    }
1525
1526    #[test]
1527    fn test_ner_analyzer() {
1528        let analyzer = NERAnalyzer::new();
1529
1530        let result = analyzer
1531            .analyze("John Smith works at Microsoft in Seattle.")
1532            .unwrap();
1533
1534        assert_eq!(result.analysis_type, "named_entity_recognition");
1535        assert!(result.result["entities"].is_array());
1536    }
1537
1538    #[test]
1539    fn test_conversational_ai() {
1540        let mut ai = ConversationalAI::new();
1541
1542        let response = ai.process_input("Hello, how are you?").unwrap();
1543
1544        assert!(!response.response.is_empty());
1545        assert!(response.confidence > 0.0);
1546        assert_eq!(ai.conversation_history.len(), 1);
1547    }
1548
1549    #[test]
1550    fn test_context_manager() {
1551        let mut manager = ContextManager::new();
1552
1553        let intent = Some("greeting".to_string());
1554        let entities = vec![Entity {
1555            text: "John".to_string(),
1556            entity_type: "PERSON".to_string(),
1557            start: 0,
1558            end: 4,
1559            confidence: 0.9,
1560        }];
1561
1562        manager.update_context(&intent, &entities);
1563
1564        let context = manager.get_current_context();
1565        assert!(context.contains_key("last_intent"));
1566        assert!(context.contains_key("PERSON"));
1567    }
1568
1569    #[test]
1570    fn test_pipeline_with_components() {
1571        let mut pipeline = NLPPipeline::new(NLPPipelineConfig::default());
1572
1573        // Add components
1574        let normalizer = Box::new(TextNormalizer::new(PreprocessingConfig::default()));
1575        let analyzer = Box::new(SentimentAnalyzer::new());
1576
1577        pipeline.add_preprocessor(normalizer);
1578        pipeline.add_analyzer(analyzer);
1579
1580        let result = pipeline.process_text("This is a great example!").unwrap();
1581
1582        assert!(!result.original_text.is_empty());
1583        assert!(!result.processed_text.is_empty());
1584        assert!(result.analysis_results.len() > 0);
1585    }
1586
1587    #[test]
1588    fn test_model_types() {
1589        let sentiment_type = ModelType::SentimentAnalysis;
1590        let ner_type = ModelType::NamedEntityRecognition;
1591        let custom_type = ModelType::Custom("test".to_string());
1592
1593        match sentiment_type {
1594            ModelType::SentimentAnalysis => assert!(true),
1595            _ => assert!(false),
1596        }
1597
1598        match ner_type {
1599            ModelType::NamedEntityRecognition => assert!(true),
1600            _ => assert!(false),
1601        }
1602
1603        match custom_type {
1604            ModelType::Custom(name) => assert_eq!(name, "test"),
1605            _ => assert!(false),
1606        }
1607    }
1608
1609    #[test]
1610    fn test_evaluation_metrics() {
1611        let metrics = vec![
1612            EvaluationMetric::Accuracy,
1613            EvaluationMetric::F1Score,
1614            EvaluationMetric::BleuScore,
1615        ];
1616
1617        assert_eq!(metrics.len(), 3);
1618    }
1619}