Module performance_optimization

Module performance_optimization 

Source
Expand description

§Performance Optimization Module

This module provides comprehensive performance optimization capabilities for the composable execution framework. It includes algorithms and strategies to optimize execution performance, resource utilization, throughput, latency, and overall system efficiency through intelligent optimization techniques.

§Performance Optimization Architecture

The performance optimization system is built around multiple specialized optimizers:

PerformanceOptimizer (main coordinator)
├── ThroughputOptimizer      // Maximize task completion rate
├── LatencyOptimizer         // Minimize task execution latency
├── ResourceOptimizer        // Optimize resource utilization
├── EnergyOptimizer          // Minimize energy consumption
├── CacheOptimizer           // Optimize cache hit rates
├── MemoryOptimizer          // Optimize memory usage patterns
├── NetworkOptimizer         // Optimize network performance
├── LoadBalanceOptimizer     // Balance load distribution
├── PipelineOptimizer        // Optimize execution pipelines
└── PredictiveOptimizer      // ML-based performance prediction

§Optimization Strategies

§Throughput Optimization

  • Parallel Processing: Maximize concurrent task execution
  • Batch Processing: Group similar tasks for efficiency
  • Pipeline Optimization: Minimize pipeline stalls
  • Resource Scaling: Dynamic resource allocation

§Latency Optimization

  • Task Prioritization: High-priority task fast paths
  • Preemptive Scheduling: Interrupt low-priority tasks
  • Cache Warming: Proactive cache population
  • Resource Pre-allocation: Avoid allocation delays

§Resource Optimization

  • Utilization Maximization: Keep resources busy
  • Fragmentation Reduction: Minimize resource waste
  • Locality Optimization: CPU/memory/network locality
  • Dynamic Scaling: Scale resources with demand

§Energy Optimization

  • Frequency Scaling: Dynamic CPU frequency adjustment
  • Idle State Management: Efficient power state transitions
  • Thermal Management: Temperature-aware optimization
  • Workload Consolidation: Reduce active hardware

§Usage Examples

§Basic Performance Optimization

use sklears_compose::performance_optimization::*;

// Create performance optimizer with default configuration
let mut optimizer = PerformanceOptimizer::new()?;
optimizer.initialize()?;

// Configure optimization goals
let goals = OptimizationGoals {
    primary_objective: OptimizationObjective::Throughput,
    secondary_objectives: vec![
        OptimizationObjective::ResourceUtilization,
        OptimizationObjective::EnergyEfficiency,
    ],
    constraints: OptimizationConstraints {
        max_latency: Some(Duration::from_millis(100)),
        min_throughput: Some(1000.0), // tasks/sec
        max_energy_consumption: Some(500.0), // watts
        ..Default::default()
    },
};

optimizer.set_goals(goals)?;

§Advanced Throughput Optimization

// Configure throughput optimizer
let throughput_config = ThroughputOptimizerConfig {
    target_throughput: 2000.0, // tasks/sec
    optimization_strategy: ThroughputStrategy::MaxParallel,
    batch_size_optimization: true,
    pipeline_optimization: true,
    resource_scaling: true,
    load_balancing: true,
};

let throughput_optimizer = ThroughputOptimizer::new(throughput_config)?;
optimizer.add_optimizer(Box::new(throughput_optimizer))?;

// Start optimization loop
optimizer.start_optimization().await?;

§Latency-Critical Optimization

// Configure for ultra-low latency
let latency_config = LatencyOptimizerConfig {
    target_latency: Duration::from_micros(500), // 500μs target
    optimization_strategy: LatencyStrategy::PreemptiveScheduling,
    enable_cache_warming: true,
    enable_preallocation: true,
    enable_fast_paths: true,
    jitter_reduction: true,
};

let latency_optimizer = LatencyOptimizer::new(latency_config)?;
optimizer.add_optimizer(Box::new(latency_optimizer))?;

§Energy-Efficient Optimization

// Configure for energy efficiency
let energy_config = EnergyOptimizerConfig {
    target_efficiency: 0.9, // 90% efficiency
    enable_frequency_scaling: true,
    enable_idle_states: true,
    enable_thermal_management: true,
    workload_consolidation: true,
    green_computing_mode: true,
};

let energy_optimizer = EnergyOptimizer::new(energy_config)?;
optimizer.add_optimizer(Box::new(energy_optimizer))?;

§Machine Learning-Based Optimization

// Configure predictive optimizer
let ml_config = PredictiveOptimizerConfig {
    model_type: MLModelType::NeuralNetwork,
    training_data_size: 10000,
    prediction_horizon: Duration::from_secs(60),
    learning_rate: 0.001,
    enable_online_learning: true,
    feature_engineering: true,
};

let predictive_optimizer = PredictiveOptimizer::new(ml_config)?;
optimizer.add_optimizer(Box::new(predictive_optimizer))?;

Structs§

ActualImpact
Actual impact of optimization
CacheMetrics
Cache performance metrics
EnergyMetrics
Energy consumption metrics
EnergyOptimizer
Energy optimizer implementation
EnergyOptimizerConfig
Energy optimizer configuration
EnergyOptimizerState
Energy optimizer state
ExpectedImpact
Expected impact of optimization
LatencyOptimizer
Latency optimizer implementation
LatencyOptimizerConfig
Latency optimizer configuration
LatencyOptimizerState
Latency optimizer state
MLModel
ML model abstraction
NetworkPerformanceMetrics
Network performance metrics
ObjectiveWeights
Objective weights for multi-objective optimization
OptimizationConstraints
Optimization constraints
OptimizationGoals
Optimization goals and objectives
OptimizationOpportunity
Optimization opportunity
OptimizationRecommendation
Optimization recommendation
OptimizationResult
Optimization result
OptimizerConfig
Optimizer configuration
OptimizerMetrics
Optimizer metrics
OptimizerState
Optimizer state
PerformanceAnalysis
Performance analysis result
PerformanceBaselines
Performance baselines for comparison
PerformanceBottleneck
Performance bottleneck
PerformanceMetrics
Performance metrics collector
PerformanceOptimizer
Main performance optimizer coordinating all optimization strategies
PerformancePrediction
Performance prediction
PerformanceSnapshot
Performance snapshot
PerformanceTargets
Performance targets
PerformanceTrends
Performance trends analysis
PipelineMetrics
Pipeline performance metrics
PredictiveOptimizer
Machine learning-based predictive optimizer
PredictiveOptimizerConfig
Predictive optimizer configuration
PredictiveOptimizerState
Predictive optimizer state
QualityMetrics
Quality metrics
ResourceLimits
Resource usage limits
ResourceUtilizationMetrics
Resource utilization metrics
RiskAssessment
Risk assessment
SlaRequirement
SLA requirement
ThroughputOptimizer
Throughput optimizer implementation
ThroughputOptimizerConfig
Throughput optimizer configuration
ThroughputOptimizerState
Throughput optimizer state
TrainingDataPoint
Training data point
TrendData
Trend data

Enums§

BottleneckType
Bottleneck types
LatencyStrategy
Latency optimization strategies
MLModelType
ML model types
OpportunityType
Opportunity types
OptimizationAction
Optimization actions
OptimizationDomain
Optimization domains
OptimizationObjective
Optimization objectives
OptimizationPhase
Optimization phases
PowerMode
Power management modes
RecommendationPriority
Recommendation priority
RecommendationType
Recommendation types
SlaMetricType
SLA metric types
ThermalState
Thermal states
ThroughputStrategy
Throughput optimization strategies
TrendDirection
Trend directions

Traits§

SpecializedOptimizer
Specialized optimizer trait