Expand description
§Performance Optimization Module
This module provides comprehensive performance optimization capabilities for the composable execution framework. It includes algorithms and strategies to optimize execution performance, resource utilization, throughput, latency, and overall system efficiency through intelligent optimization techniques.
§Performance Optimization Architecture
The performance optimization system is built around multiple specialized optimizers:
PerformanceOptimizer (main coordinator)
├── ThroughputOptimizer // Maximize task completion rate
├── LatencyOptimizer // Minimize task execution latency
├── ResourceOptimizer // Optimize resource utilization
├── EnergyOptimizer // Minimize energy consumption
├── CacheOptimizer // Optimize cache hit rates
├── MemoryOptimizer // Optimize memory usage patterns
├── NetworkOptimizer // Optimize network performance
├── LoadBalanceOptimizer // Balance load distribution
├── PipelineOptimizer // Optimize execution pipelines
└── PredictiveOptimizer // ML-based performance prediction§Optimization Strategies
§Throughput Optimization
- Parallel Processing: Maximize concurrent task execution
- Batch Processing: Group similar tasks for efficiency
- Pipeline Optimization: Minimize pipeline stalls
- Resource Scaling: Dynamic resource allocation
§Latency Optimization
- Task Prioritization: High-priority task fast paths
- Preemptive Scheduling: Interrupt low-priority tasks
- Cache Warming: Proactive cache population
- Resource Pre-allocation: Avoid allocation delays
§Resource Optimization
- Utilization Maximization: Keep resources busy
- Fragmentation Reduction: Minimize resource waste
- Locality Optimization: CPU/memory/network locality
- Dynamic Scaling: Scale resources with demand
§Energy Optimization
- Frequency Scaling: Dynamic CPU frequency adjustment
- Idle State Management: Efficient power state transitions
- Thermal Management: Temperature-aware optimization
- Workload Consolidation: Reduce active hardware
§Usage Examples
§Basic Performance Optimization
ⓘ
use sklears_compose::performance_optimization::*;
// Create performance optimizer with default configuration
let mut optimizer = PerformanceOptimizer::new()?;
optimizer.initialize()?;
// Configure optimization goals
let goals = OptimizationGoals {
primary_objective: OptimizationObjective::Throughput,
secondary_objectives: vec![
OptimizationObjective::ResourceUtilization,
OptimizationObjective::EnergyEfficiency,
],
constraints: OptimizationConstraints {
max_latency: Some(Duration::from_millis(100)),
min_throughput: Some(1000.0), // tasks/sec
max_energy_consumption: Some(500.0), // watts
..Default::default()
},
};
optimizer.set_goals(goals)?;§Advanced Throughput Optimization
ⓘ
// Configure throughput optimizer
let throughput_config = ThroughputOptimizerConfig {
target_throughput: 2000.0, // tasks/sec
optimization_strategy: ThroughputStrategy::MaxParallel,
batch_size_optimization: true,
pipeline_optimization: true,
resource_scaling: true,
load_balancing: true,
};
let throughput_optimizer = ThroughputOptimizer::new(throughput_config)?;
optimizer.add_optimizer(Box::new(throughput_optimizer))?;
// Start optimization loop
optimizer.start_optimization().await?;§Latency-Critical Optimization
ⓘ
// Configure for ultra-low latency
let latency_config = LatencyOptimizerConfig {
target_latency: Duration::from_micros(500), // 500μs target
optimization_strategy: LatencyStrategy::PreemptiveScheduling,
enable_cache_warming: true,
enable_preallocation: true,
enable_fast_paths: true,
jitter_reduction: true,
};
let latency_optimizer = LatencyOptimizer::new(latency_config)?;
optimizer.add_optimizer(Box::new(latency_optimizer))?;§Energy-Efficient Optimization
ⓘ
// Configure for energy efficiency
let energy_config = EnergyOptimizerConfig {
target_efficiency: 0.9, // 90% efficiency
enable_frequency_scaling: true,
enable_idle_states: true,
enable_thermal_management: true,
workload_consolidation: true,
green_computing_mode: true,
};
let energy_optimizer = EnergyOptimizer::new(energy_config)?;
optimizer.add_optimizer(Box::new(energy_optimizer))?;§Machine Learning-Based Optimization
ⓘ
// Configure predictive optimizer
let ml_config = PredictiveOptimizerConfig {
model_type: MLModelType::NeuralNetwork,
training_data_size: 10000,
prediction_horizon: Duration::from_secs(60),
learning_rate: 0.001,
enable_online_learning: true,
feature_engineering: true,
};
let predictive_optimizer = PredictiveOptimizer::new(ml_config)?;
optimizer.add_optimizer(Box::new(predictive_optimizer))?;Structs§
- Actual
Impact - Actual impact of optimization
- Cache
Metrics - Cache performance metrics
- Energy
Metrics - Energy consumption metrics
- Energy
Optimizer - Energy optimizer implementation
- Energy
Optimizer Config - Energy optimizer configuration
- Energy
Optimizer State - Energy optimizer state
- Expected
Impact - Expected impact of optimization
- Latency
Optimizer - Latency optimizer implementation
- Latency
Optimizer Config - Latency optimizer configuration
- Latency
Optimizer State - Latency optimizer state
- MLModel
- ML model abstraction
- Network
Performance Metrics - Network performance metrics
- Objective
Weights - Objective weights for multi-objective optimization
- Optimization
Constraints - Optimization constraints
- Optimization
Goals - Optimization goals and objectives
- Optimization
Opportunity - Optimization opportunity
- Optimization
Recommendation - Optimization recommendation
- Optimization
Result - Optimization result
- Optimizer
Config - Optimizer configuration
- Optimizer
Metrics - Optimizer metrics
- Optimizer
State - Optimizer state
- Performance
Analysis - Performance analysis result
- Performance
Baselines - Performance baselines for comparison
- Performance
Bottleneck - Performance bottleneck
- Performance
Metrics - Performance metrics collector
- Performance
Optimizer - Main performance optimizer coordinating all optimization strategies
- Performance
Prediction - Performance prediction
- Performance
Snapshot - Performance snapshot
- Performance
Targets - Performance targets
- Performance
Trends - Performance trends analysis
- Pipeline
Metrics - Pipeline performance metrics
- Predictive
Optimizer - Machine learning-based predictive optimizer
- Predictive
Optimizer Config - Predictive optimizer configuration
- Predictive
Optimizer State - Predictive optimizer state
- Quality
Metrics - Quality metrics
- Resource
Limits - Resource usage limits
- Resource
Utilization Metrics - Resource utilization metrics
- Risk
Assessment - Risk assessment
- SlaRequirement
- SLA requirement
- Throughput
Optimizer - Throughput optimizer implementation
- Throughput
Optimizer Config - Throughput optimizer configuration
- Throughput
Optimizer State - Throughput optimizer state
- Training
Data Point - Training data point
- Trend
Data - Trend data
Enums§
- Bottleneck
Type - Bottleneck types
- Latency
Strategy - Latency optimization strategies
- MLModel
Type - ML model types
- Opportunity
Type - Opportunity types
- Optimization
Action - Optimization actions
- Optimization
Domain - Optimization domains
- Optimization
Objective - Optimization objectives
- Optimization
Phase - Optimization phases
- Power
Mode - Power management modes
- Recommendation
Priority - Recommendation priority
- Recommendation
Type - Recommendation types
- SlaMetric
Type - SLA metric types
- Thermal
State - Thermal states
- Throughput
Strategy - Throughput optimization strategies
- Trend
Direction - Trend directions
Traits§
- Specialized
Optimizer - Specialized optimizer trait